Standard Software Addresses Common Machining Challenges
These low-cost VMCs come standard with a number of software features that enable them to compensate for machining’s inherent physical and thermal challenges.
Share
Takumi USA
Featured Content
View MoreHwacheon Machinery America, Inc.
Featured Content
View MoreMachine tools fight physics as they cut. Each encounters centrifugal force, thermal expansion and variances in tool load that can adversely affect machining accuracy. According to Hwacheon, shops generally overcome these hurdles either by buying optional tooling, spindle or software components, or by purchasing a costly machine that already has features built-in to address those issues.
However, Hwacheon has made a concerted effort to offer high-end machining capabilities in line with a job shop’s pocketbook. Introduced at IMTS 2010, the Korean builder’s low-cost Vesta line of VMCs comes standard with a number of software features that enable them to compensate for machining’s inherent physical and thermal challenges. These features provide:
•Spindle displacement control—This addresses two conditions: centrifugal force and spindle thermal growth. Centrifugal force at high spindle speeds causes the spindle taper to expand. This tends to pull the toolholder higher up into the spindle, causing variation in a tool’s Z-axis length. Although this spindle taper expansion isn’t managed physically, the Vesta’s Hwacheon Spindle Displacement Control (HSDC) can compensate for Z-axis variation by adjusting the Z-axis servomotor to change the tool’s longitudinal position.
Similarly, thermal growth can adversely affect part accuracy because tools grow longitudinally as spindle temperature increases. This growth varies depending on the rotational speed, tool mass and spindle characteristics. The HSDC compensates for varying tool growth using sensors located along the length of the spindle that continuously monitor spindle temperature. Plus, a cooling jacket installed on the motor both controls heat and keeps the temperature of internal spindle components uniform. This jacket works in conjunction with a fan-cooled chiller unit that cycles according to the spindle temperature.
•Frame displacement control—Thermal growth can also cause a machine’s frame to move, meaning operators must make offsets so that parts are machined to tolerance. This can lead to downtime and potential scrap if there is no automatic means to control these offsets. The Hwacheon Frame Displacement Control (HFDC) receives feedback from temperature sensors strategically placed on each Vesta machine’s casting. Finite Element Analysis design combined with a set of algorithms allows the HFDC to automatically offset the machine’s axis motors to compensate for this thermal growth.
•Efficient Contour Control—It can be difficult to achieve high speed and high precision simultaneously because the precision with which a cutter follows the programmed tool path can vary. The Hwacheon Efficient Contour Control (HECC) effectively manages machining time during chip generation by optimizing the cutting parameters according to the requisite cutting speed and accuracy.
•Tool Load Detection—A dull tool requires higher power to drill a hole or mill a surface. Defects in workpiece material can cause higher tool loading, too. Plus, irregularly shaped workpieces can extend cycle time and reduce tool life because variances in part depth can cause higher loads. These scenarios can result in decreased dimensional accuracy, poor surface finish, tool breakage or even workpiece damage.
The Hwacheon Tool Load Detection (HTLD) feature actively monitors the load on the spindle motor to avoid these conditions. HTLD enables the machine operator to set load thresholds and other parameters that, when exceeded, will trigger an alarm and stop the machine. The machine’s control system also automatically adjusts the feed rate while measuring the load on a spindle motor. It will reduce feed rates when a tool encounters material hard spots or heavier cutting depths and increase the feed rate in soft areas, voids or shallower cutting depths.
Related Content
How this Job Shop Grew Capacity Without Expanding Footprint
This shop relies on digital solutions to grow their manufacturing business. With this approach, W.A. Pfeiffer has achieved seamless end-to-end connectivity, shorter lead times and increased throughput.
Read MoreContinuous Improvement and New Functionality Are the Name of the Game
Mastercam 2025 incorporates big advancements and small — all based on customer feedback and the company’s commitment to keeping its signature product best in class.
Read MoreThe Power of Practical Demonstrations and Projects
Practical work has served Bridgerland Technical College both in preparing its current students for manufacturing jobs and in appealing to new generations of potential machinists.
Read More4 Commonly Misapplied CNC Features
Misapplication of these important CNC features will result in wasted time, wasted or duplicated effort and/or wasted material.
Read MoreRead Next
5 Rules of Thumb for Buying CNC Machine Tools
Use these tips to carefully plan your machine tool purchases and to avoid regretting your decision later.
Read MoreBuilding Out a Foundation for Student Machinists
Autodesk and Haas have teamed up to produce an introductory course for students that covers the basics of CAD, CAM and CNC while providing them with a portfolio part.
Read MoreRegistration Now Open for the Precision Machining Technology Show (PMTS) 2025
The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.
Read More