The Single Minute Exchange of Dies (SMED) concept, which improves manufacturing efficiency by reducing or eliminating bottlenecks caused by process change-overs, can be applied to Single Minute Exchange of Fixtures (SMEF) to improve change-over times on various forms of gaging equipment.
Single Minute Exchange of Die (SMED) is a lean manufacturing concept that originated in the late ’50s and early ’60s to improve manufacturing efficiency by reducing or eliminating bottlenecks caused by process change-overs.
The basic caliper is often used for length/diameter measurements, but other caliper styles extend the tool’s advantages to special measurement applications.
A gage requires just enough fixturing to do its job accurately and cost-effectively. Since the fixture establishes the relationship between the workpiece and the measuring system, its design and manufacture is as important to accurate gaging as the measuring instrument itself. However, in addition to accuracy issues, the fixture design can make a difference in a gage’s efficiency and economy of use.
Measuring surface roughness of valve seats on cylinder heads is challenging. The land areas are short, and the roughness values are high. Normally, valve seats require basic roughness parameter analysis by a skidded measuring system. However, because of the short length and high roughness values, some argue that a skidless system is the best way to measure roughness of these surfaces.
Sometimes a tool that provides suitable performance in a variety of applications is a better choice than a tool that performs extremely well at one dedicated job.
Years ago, I wrote a column in this space that talked about how electronic gaging amplifiers could help make gaging more efficient and productive. Like phones and computers, today’s bench amplifiers offer greatly improved performance, better displays, less power consumption and more data user capabilities.
In the 1980s, digital electric indicators were expected to blow mechanical dial indicators out of the water. Despite electronic indicators’ higher resolutions, better accuracy and usefulness in statistical process control and data collection systems, mechanical indicators retained other advantages and continued to be specified by many users.