End Mill Line Designed for Complex Geometries Typical of Turbines
Eastec 2019: Emuge Corp.’s Turbine end mills feature geometry designed specifically for the high-performance machining of turbine and bladed components.
Share
Emuge Corp.’s Turbine end mills feature geometry designed specifically for the high-performance machining of turbine and bladed components. The line is said to offer cycle time reductions and long tool life in challenging forms and materials, including titanium, nickel alloys, aluminum alloys and others. Developed for machining components with challenging geometries, Emuge Turbine end mills featurea tapered-flute construction and hard, heat-resistant PVD coatings.
The line includes a range of tapered ball tools that feature a sub-micron grain carbide substrate and an HA cylindrical shank. The 3-, 4-, 6- and 8-degree taper ball tools are available in two-and three-flute designs;the 17.5-degree taper has three flutes. Polished flutes in the 3-, 4-, 6- and 8-degree tools promote chip evacuation in aluminum alloys. Coating options for the tools include ALCR for additional tool life in titanium alloys, high-temperature alloys, stainless steel and aluminum alloys; and TIALN for heat and abrasion resistance in a range of materials.
Tapered torus end mills include 3-, 4-, 6- and 8-degree sizes featuring two highly polished flutes, sub-micron-grain carbide, and a torus-cupped radius design for maximum stepover lengths. ALCR coating is standard, but TIALN coatings are available. A longer 8-degree taper also features a torus-cupped radius. The cutting flutes are tapered for increased efficiency, and the tool is available in a range of designs withfive to 15 flutes. The long-taper torus tools are TIALN-coated and include axial coolant-through capability for maximum tool life.
The line also includes a long torus-style tool with variable flute spacing for low-vibration milling. The tools are available in designs with five to nine flutes and corner radii of 1.0 or 2.0 mm. These end mills have a TIALN coating and coolant-through capability.
Related Content
-
How to Accelerate Robotic Deburring & Automated Material Removal
Pairing automation with air-driven motors that push cutting tool speeds up to 65,000 RPM with no duty cycle can dramatically improve throughput and improve finishing.
-
Shoulder Milling Cuts Racing Part's Cycle Time By Over 50%
Pairing a shoulder mill with a five-axis machine has cut costs and cycle times for one of TTI Machine’s parts, enabling it to support a niche racing community.
-
Toolpath Improves Chip Management for Swiss-Type Lathes
This simple change to a Swiss-type turning machine’s toolpath can dramatically improve its ability to manage chips.