See WENZEL at IMTS booth 134718
Published

Air Gaging For Itty-Bitty Holes

Conventional air gaging for measuring inside diameters is typically limited to a minimum size of about 0. 060 inch/1.

Share

Conventional air gaging for measuring inside diameters is typically limited to a minimum size of about 0.060 inch/1.52 mm: below that, it becomes difficult to machine air passages in the plug tooling, and to accommodate the precision orifices or jets. But air gaging is among the most flexible of inspection methods, and with a simple change of approach, it can be used to measure very small through holes, below 0.040 inch/lmm in diameter.

Most air gages measure back-pressure that builds up in the system when the tooling is placed in close proximity to a workpiece. In the case of bore gaging, a smaller bore means closer proximity of the part surface to the jets: this results in higher air pressure, which the gage comparator converts into a dimensional value.

A few air gages measure the rate of flow through the system rather than backpressure: as tool-to-workpiece proximity decreases, flow also decreases. The flow principle can be effectively applied to measure very small through holes, even on air gages that were designed to operate on the back-pressure principle. Rather than installing tooling at the end of the air line, the workpiece itself is connected to the line. Smaller bores restrict the flow of air more than larger ones. Thus, the workpiece essentially becomes its own gage tooling. This approach works on all common types of back-pressure gages: single-leg gages requiring dual setting masters, as well as differential-type gages, which typically use just one master.

Air flow is proportional to the bore's cross-sectional area, but area varies with the square of diameter. Gage response in this setup, therefore, is non-linear. Nevertheless, this rarely causes problems, because the range of variation to be inspected is usually very small, and the gage is typically set to both upper and lower limits using dual masters or qualified parts. If numerical results are required, specially calibrated dials may be installed on analog comparators, while some digital comparators allow software correction.

Back-pressure air gages operating as flow gages for small holes have been used in a number of specialty applications, ranging from fuel injection components to hypodermic needles. Often, all that is required is a special holder that allows the part to be attached quickly and easily, with a good air seal. Air pressure and flow stabilize quickly, making this method efficient for high-volume inspection.

Like other forms of air gaging, flowtype measuring of small through holes is extremely adaptable. It has been used to measure IDs as small as 12 microinches/0.3 micrometers, and as large as 0.050 inch/1.27mm. Range of measurement can be as long as 0.006 inch/0.15mm, and discrimination as fine as 5 microinches/0.125 micrometers. In some cases, where the hole is so small that air flow is negligible, bleeds may be engineered into the system to boost total flow to a measurable level. On the other hand, excessive flow through large bores may be brought down into a measurable range by engineering restrictors into the system.

Some parts, including some fuel injection components, have two holes sharing a common air passage, and require that the holes be measured twice: once simultaneously, and once independently. To accommodate this requirement, special two-station air gages have been designed, where the first station connects the air flow through both holes, while the second station only connects the air circuit to one of the holes, and blocks the other.

Some applications are served well by microscopes and optical comparators, although neither is well suited to high volume production applications, and both are limited in the part configurations they can accept. Go/no-go gaging with precision wires is also practical only for very low volume tasks. the air gaging method described here often requires a modest level of application engineering, and occasionally a custom dial face or gaging fixture, but it lends itself well to high-throughput inspection of very tight tolerances.

In discussing air gaging in past columns, we've often emphasized its flexibility. With it, one can measure a wide range of dimensional characteristics, including inside and outside diameters, feature location, thickness, height, and clearance/interference. Air can also be used to measure geometry characteristics such as roundness, squareness, flatness, parallelism, twist, and concentricity. And we've seen how air gages can measure very deep bores, blind holes, and counterbores. The use of air gaging to inspect very small through holes is yet another example of the tremendous adaptability of this relatively simple, but very cost-effective technology.

VERISURF
See WENZEL at IMTS booth 134718
Hurco
Universal Homepage Package W4900 Indicator
DN Solutions
Gardner Business Intelligence
BIMU 2024
VERISURF
DNS Financial Services America
JTEKT
High Accuracy Linear Encoders
An ad for Formnext Chicago on April 8-10, 2025.

Related Content

Measurement

Choosing the Correct Gage Type for Groove Inspection

Grooves play a critical functional role for seal rings and retainer rings, so good gaging practices are a must.

Read More
Measurement

Determining Out-of-Roundness at the Point of Manufacture

George Schuetz, Mahr Inc.’s Director of Precision Gages, offers these techniques for measuring roundness on the shop floor.

Read More
Basics

A Case for Combining Workholding with Optical Scanning

Automotive dies and die inserts are often complex, one-off parts with little room for error. Integrity Tool's investments in modular workholding tools and 3D optical scanning have allowed the company to create niche capabilities for its CNC machined parts.

Read More

5 Things CNC Operators Must Know About Sizing Adjustments

For CNC operators, sizing adjustment is an essential skill. Keep these points in mind when training new CNC users.

Read More

Read Next

Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
See WENZEL at IMTS booth 134718