Polymer Perspective

Share

For Andrew Tordanato, Diversified Manufacturing Technologies president, getting into 3D printing was a natural evolution. His family owns Mohawk Manufacturing, a metal stamping operation that has been in business since 1921. In 2015, the company added a metal 3D printing division in response to changing customer demands. Diversified Manufacturing Technologies grew out of that experience, along with the desire to further “diversify” into plastics and carbon fiber reinforced polymer (CFRP) as well as metals. Things are coming full circle now, as Diversified not only prints parts but also helps manufacturers who are thinking about adding their own additive manufacturing (AM) equipment to their shopfloor operations.

Today, Diversified Manufacturing Technologies manufactures parts for customers ranging from small job shops to large original equipment manufacturers (OEMs). The equipment at its Middletown, Connecticut, facility includes metal 3D printers such as a 3D Systems ProX 300 as well as half a dozen polymer 3D printers from MarkForged capable of laying a continuous thread of fiberglass, Kevlar or other fiber along with plastic filament to increase part strength. Diversified is also equipped with CNC machining and EDM capability, primarily used internally for finishing 3D-printed parts.

On the metals side, most of the company’s work is in prototyping, aerospace R&D and production parts, and short runs for the jewelry industry. With its polymer printers, the focus is jigs and fixtures, brackets, and short runs of items such as cases and handles. The work is often overflow for customers trying to meet tight production deadlines. Diversified is able to print parts on short notice, without the setup that would be required at a CNC shop.

Successful jobs often result in repeat orders and can lead to a better part design—converting a two-piece assembly down to a single 3D-printed piece, for instance. Sometimes customers go on to add their own 3D printers and bring production back in house. Recently, these types of customer relationships have led Diversified into consulting work to help companies decide whether to add 3D printing capability.

When working with a shop, Mr. Tordanato says there are three key questions he asks to help determine if the addition of a 3D printer is appropriate:

  1. What kinds of materials are you working with? 3D printers are compatible with a limited number of materials, so if a specific metal or polymer is required, that might sway the decision in one direction or another. However, an exact match is not always necessary, Mr. Tordanato says. For instance, carbon-fiber-filled parts made with the MarkForged printers can be strong enough to replace metal ones in the right applications.
  2. Is there flexibility in the manufacturing or design of the parts you make? In other words, does the way it’s made matter? In industries like aerospace, where process certification is important, there may not be flexibility to move a part from a machining workflow to a 3D printing one. On the other hand, parts with less stringent process or geometry requirements such as jigs and fixtures make good candidates for 3D printing, and could even be improved by additive manufacturing (think reduced weight and consolidated assemblies, for instance).
  3. What is the part’s end use? Shops don’t necessarily know the destinies of the parts they make, but this information is critical before transitioning work. Understanding the function of the part, where it will be installed and performance requirements is necessary to determine which parts are matches for 3D printing and which are not.

The answers to these questions will help determine whether a shop is ready for 3D printing based on the parts it currently makes, and if so, what type of AM equipment might be best. In many cases, shops can add polymer-based printers without needing any additional staff, Mr. Tordanato says (though he notes that metal systems tend to require deeper training and benefit from dedicated operators).

Of course, the specifics don’t matter unless the shop can answer the most basic question: Are you willing to change your thought process?

“The only way to take advantage of AM is to think additively,” Mr. Tordanato says. Initially that might mean identifying current parts suited to in-house 3D printing, but deciding when and how to implement AM is an ongoing process. To make the best use of the technology, shops should consider 3D printing as an option from the beginning of new jobs.

Additive Manufacturing Conference
Polymer Perspective
Formnext Chicago on April 8-10, 2025.
I Am a MatchMaker
Additive Manufacturing
VERISURF
DN Solutions
paperlessPARTS
JTEKT
MMS Made in the USA
An ad for Formnext Chicago on April 8-10, 2025.
High Accuracy Linear Encoders

Related Content

Additive/Subtractive Hybrid CNC Machine Tools Continue to Make Gains (Includes Video)

The hybrid machine tool is an idea that continues to advance. Two important developments of recent years expand the possibilities for this platform.

Read More
Basics

Go Digital: How to Succeed in the Fourth Industrial Revolution With Additive Manufacturing

The digitalization of manufacturing is set to transform production and global supply chains as we know them, and additive manufacturing has been leading the way in many industries.

Read More
IMTS

5 Tips for Getting the Most From the Historic Return of North America’s Biggest Manufacturing Event

Plan. Explore. Think of the future. And oh yeah, the shoes. Here is how to get the most from the major manufacturing event that none of us have experienced in four years, and that many will be experiencing for the first time.

Read More
Medical

4 Ways 3D Printing Is Changing Medical Implants

Additive manufacturing provides new ways of making medical implants, but its impact is greater than this. How 3D printing is changing medical manufacturing and improving patient outcomes. 

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Turning Machines

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
Polymer Perspective