SW North America, CNC Machines and Automation
Published

Where Grinding Still Beats Hard Turning

For many critical applications, grinding remains the optimal machining process.

Share

Although advances in CNC turning centers and cutting tools have made substantial strides in favor of hard turning over grinding, grinding often turns out to be the better choice. That’s the position taken by Rob Titus, senior applications engineer—grinding products at Okuma America Corp. (Charlotte, North Carolina). Okuma is probably best known for its CNC lathes and machining centers. However, the company also offers a line of cylindrical OD and ID CNC grinders. With these interests in mind, the builder is always eager to find the best process for an application, whether it involves hard turning or grinding.

Mr. Titus points to the GA-26T OD grinder, shown recently at the 2012 International Manufacturing Technology Show (IMTS), as a representative example of grinding technology from Okuma. With automation provided by Gosiger Automation, the CNC grinder is designed for OD finishing of small- to medium-sized parts in high-volume production environments. To make the most of floor space, the grinder holds the workpiece stationary while the grinding wheel traverses back and forth. At the show, this grinder was equipped with in-process gaging, a wheel balancer and a 20-hp wheel spindle.

Mr. Titus frequently advises users on the merits of grinding versus hard turning. He says there are at least seven reasons to grind rather than hard turn:

1. Grinding excels at meeting surface finish, size and roundness requirements. A grinding process can achieve a 6 Ra surface finish, hold a size tolerance of less than 0.0002 inch and grind parts to within 30 millionths roundness.

2. Grinding provides a more cost-effective and stable process than turning for ceramic and carbide material. Hard turning carbides or ceramics requires diamond (PCD or CVD) inserts. Rapid wear and chipping of the inserts can result in size variation or scrapped parts. This adds downtime to change inserts and re-establish part size. In contrast, when grinding these materials with diamond-grit wheels, there is gradual wheel wear. The wheel can be dressed to expose new diamond grains without stopping production.

3. Grinding meets the “no lead” specification. This spec refers to the “spiral” visible on a turned shaft. It is created by a single-point cutting tool moving transversely as the part rotates on a lathe. This surface pattern can cause premature failure of seals on a shaft. By plunge grinding the shaft, the lead is eliminated.

4. Grinding is a common customer requirement. Automotive, aerospace and medical markets often specify a ground finish on critical parts.

5. Grinding wheels are not affected by interrupted cuts created by workpieces with features such as keyways or splines. Depending on the shape and size of these features, the interrupted cut can cause premature insert chipping in hard turning operations.

6. Grinding wheels cost less per part than other types of tooling. In some common cases, a grinding wheel can last 120,000 parts before it needs to be changed. If the cost of the wheel is $600, that’s a half a penny per part.

7. Grinding requires less downtime. How many times will an insert need changing on a CNC lathe throughout 120,000 parts?

Mr. Titus notes that most decisions about grinding or hard turning are not cut and dry. These decisions usually require expertise in both grinding and turning, he says, hence the value of consulting with Okuma, its distributor network or Partners in THINC consortium of technology providers. “We are certainly interested in raising the awareness that Okuma has a range of grinder models, but our primary concern is maximizing the user’s productivity and effectiveness,” he says.

Campro USA
SW North America, CNC Machines and Automation
YCM Alliance
World Machine Tool Survey
715 Series - 5-axis complete machining
Koma Precision
More blasting. Less part handling.
DN Solutions
TIMTOS
PMTS 2025 Register Now!
SolidCAM
MMS Made in the USA

Related Content

Grinding

10 Things to Know About Creep-Feed Grinding

Because of the high material removal rate creep-feed grinding can deliver in challenging materials, grinding might not be just the last step in the process—it might be the process.

Read More
Sponsored

How to Mitigate Chatter to Boost Machining Rates

There are usually better solutions to chatter than just reducing the feed rate. Through vibration analysis, the chatter problem can be solved, enabling much higher metal removal rates, better quality and longer tool life.

Read More
Sponsored

Lean Approach to Automated Machine Tending Delivers Quicker Paths to Success

Almost any shop can automate at least some of its production, even in low-volume, high-mix applications. The key to getting started is finding the simplest solutions that fit your requirements. It helps to work with an automation partner that understands your needs.

Read More
Sponsored

High RPM Spindles: 5 Advantages for 5-axis CNC Machines

Explore five crucial ways equipping 5-axis CNC machines with Air Turbine Spindles® can achieve the speeds necessary to overcome manufacturing challenges.

Read More

Read Next

Sponsored

The Future of High Feed Milling in Modern Manufacturing

Achieve higher metal removal rates and enhanced predictability with ISCAR’s advanced high-feed milling tools — optimized for today’s competitive global market.

Read More

5 Rules of Thumb for Buying CNC Machine Tools

Use these tips to carefully plan your machine tool purchases and to avoid regretting your decision later.

Read More
Toolholders

Rego-Fix’s Center for Machining Excellence Promotes Collaboration

The new space includes a showroom, office spaces and an auditorium that will enhance its work with its technical partners.

Read More
YCM Alliance