Stiffness Improvement at Interface Leads to Spindle Life Increase
How the tool was clamped affected the spindle’s life because of the way the user naturally attempted to overcome the stiffness limitation, says tooling company.
What is the connection between the toolholder interface and the life of a machining center’s spindle? Offhand, it doesn’t seem like there should be a connection. How long the spindle performs effectively is different from the means by which it holds tooling.
But according to Bill Redman, global product manager for tooling systems with Kennametal, a Tier-One aircraft-industry manufacturer recently observed a significant increase in spindle life when it retrofitted milling spindles in its facility to the tooling company’s KM4X toolholder system. Certain machines had previously required spindle rebuilding every six months. That level of frequent spindle maintenance stopped.
Designed for quick change on heavy-duty spindles, the KM4X system uses four locking balls (as opposed to two on an earlier, smaller version of this system) to achieve fast, precise clamping of the toolholder into the spindle. Significantly, the four-ball lock also provides for high bending stiffness—and this is the reason for the spindle life increase, Mr. Redman says. Previously, to try to compensate for low bending stiffness in heavy cuts, the manufacturer was over-clamping its conical toolholders. The resulting bell-mouthing of the spindle led to the spindle failures. Thus, it wasn’t literally the toolholder interface affecting spindle life, but the user’s response to the limitations of that interface.
Applicable to non-rotating tools as well, the KM4X system can also provide high bending stiffness for tools such as long boring bars, Mr. Redman notes.
Related Content
-
How to Mitigate Chatter to Boost Machining Rates
There are usually better solutions to chatter than just reducing the feed rate. Through vibration analysis, the chatter problem can be solved, enabling much higher metal removal rates, better quality and longer tool life.
-
How to Accelerate Robotic Deburring & Automated Material Removal
Pairing automation with air-driven motors that push cutting tool speeds up to 65,000 RPM with no duty cycle can dramatically improve throughput and improve finishing.
-
10 Ways Additive Manufacturing and Machining Go Together and Affect One Another
Forget “additive versus subtractive.” Machining and metal additive manufacturing are interconnected, and enhance the possibilities for one another. Here is a look at just some of the ways additive and machining interrelate right now.