T.J. Davies
Published

Small Milling Tool Accounts For Big Productivity Gain In Machining Forging Dies

Who would have ever thought that such a small mill could so consistently and so reliably finish machine that hardened die steel.

Share

It's hard to say what represents a greater manufacturing challenge—a production run of thousands of pieces or a run, if you can really call it a run, of just one piece. In today's highly competitive world of producing parts for the major automakers, having to make one single part is just as important as churning out thousands. You can't make a mistake. You cannot afford to dawdle over the one part run.

Detroit Drop Die (Romulus, Michigan) has carved out its niche as a supplier of impression dies for forging, often in runs of one, to the auto companies and suppliers to the auto companies. Some of the companies that Detroit Drop Die works for include Webb Forging Co. (Carlisle, South Carolina), a manufacturer of conveyor chains; Pioneer Forge (Pioneer, Ohio), a producer of steering arms and pitman arms for the auto industry; and Keystone Forge (Northumberland, Pennsylvania), a maker of firefighters' axes.

A frequently used steel for dies is FX2 from A. Finkle & Sons Co. Classified as a hot work die steel, FX2 is a nickel-chromium-molybdenum alloy steel with high temperature properties. In addition to its use for forging dies, this steel is also used to make high performance gears, pinions and crankshafts. The very properties that make this such an excellent die material also make it difficult to machine. The dies made by Detroit Drop Die are generally hardened to nearly 38 to 42 Rockwell C.

A typical impression die made by Detroit Drop Die may contain as many as six impressions; in other words, it would be used to forge six raw parts. Standard machining practice of the already hardened die steel, according to Patrick O'Toole, Detroit Drop Die's CNC programmer, is to use a solid carbide mill for the roughing operation and then, past practice dictates the use of another solid carbide mill specially ground for finish machining. These specialty mills, laboriously ground in-house, would impart the 0.020-inch radii required for so many of the forging dies. Alone, the amount of time spent grinding the tiny radii was often prohibitive.

The company was using its Okuma-Howa 10-hp machining center, and the best that it could do with the 0.25-inch diameter solid carbide milling cutter, running with a coolant, was machining at 4.0 ipm at a spindle speed of 2,500 rpm. Depth of cut was set at 0.050 inch. To Mr. O'Toole, that was just too slow. "Besides, regrinding the cutters was very time consuming," he adds. "Also, consistently grinding the right radius was difficult at best. Then, we also had to use a coolant. To make a long story short, there had to be a better way."

Sometimes when things are the most frustrating, fortunes take a turn for the better. As it turns out Carboloy technical representative Manfred Lenz and Mark Jensen from SSC Industrial in Romulus, Michigan, paid a "cold call,"-dropped in unannounced-on Detroit Drop Die. When Mr. O'Toole related the problems he was experiencing with the solid carbide mills, Mr. Lenz and Mr. Jensen convinced him to try a Minimaster from Seco (Detroit, Michigan).

The Minimaster is a versatile milling system with replaceable inserts for grooving, facing, shoulder milling, drilling, chamfering and copying. The holder, made of either 4340 steel or Densimet, a powder metallurgy product consisting of approximately 90 percent tungsten and 10 percent iron and nickel, offers rigidity and vibration damping.

Mr. Lenz and Mr. Jensen recommended the combination of an MM06-0.62-4.3-3 shank fitted with an MM06-0.250-.B90P-M02 precision ground blade. The type MM06-0.62-4.3-3 shank is 0.625 inch in diameter and has a taper of 85 degrees. The MM06-0.250-B90P-M02 is an insert for finish machining. Material grade is F30M, which is specifically designed "for machining of heat-treated steels, stain-less steels and high temperature alloys.

Then, running without coolant, the machining center had no trouble whatsoever taking the same 0.050-inch depth of cut at a slightly higher spindle speed of 2,900 rpm and at 8.9 inches per minute, more than double the previous cutting speed. That's a 122 percent improvement. This significant productivity improvement was not the only reason for switching to the Carboloy product. It is equally important that the tool consistently repeat this performance.

With that sort of productivity and repeatability improvement from the Minimaster now standard operating procedure, Mr. O'Toole comments, "Who would have ever thought that such a small mill could so consistently and so reliably finish machine that hardened die steel. Not only did we cut it faster, but we also saved money and cleanup by not having to use a coolant. We should have investigated the Minimaster earlier." So, what started out as a nothing ventured, nothing gained "cold call" turned into a good business decision for Carboloy and Detroit Drop Die.

IMCO
Kyocera MA90
Ingersoll Cutting Tools
Sumitomo
Horn USA
T.J. Davies
Iscar
CERATIZIT OptiLine Solid Carbide End Mills
The Automated Shop Conference
World Machine Tool Survey
An ad for Formnext Chicago on April 8-10, 2025.
DNS Financial Services America

Related Content

Milling Tools

Twin Spindle Design Doubles Production of Small Parts

After experiencing process stalls in the finishing stage of production, Bryan Machine Service designed an air-powered twin spindle and indexable rotating base to effectively double its production of small parts.

Read More
Turning Tools

Buying a Lathe: The Basics

Lathes represent some of the oldest machining technology, but it’s still helpful to remember the basics when considering the purchase of a new turning machine. 

Read More

How to Turn Machine Shop Downtime Into Process Expertise

To take advantage of a lull in business, JR Machine devised a week-long cutting tool event that elevated the shop’s capabilities with aerospace alloys.

Read More
Sponsored

How to Accelerate Robotic Deburring & Automated Material Removal

Pairing automation with air-driven motors that push cutting tool speeds up to 65,000 RPM with no duty cycle can dramatically improve throughput and improve finishing.

Read More

Read Next

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More
Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
Sumitomo