SW North America, CNC Machines and Automation
Published

Floating Plate Takes The Run . . . Out

Understanding the critical role of the grinding operation in the shop's manufacturing process, grinding machine makers continuously apply the best technical knowledge available to their machines. Often these are little innovations that help reduce the opportunities for inaccuracy to seep into the process. A typical example of such innovation is found in this manufacturer's line of grinding machine tools.

Share

In most of the metalworking steps that precede the precision grinding operation, there is some room in the process for a little extra stock to be left. It’s the grinding operation where the final size and finish are imparted. Basically, precision grinding leaves no room for error. The operation either hits the part specification tolerance or the whole series of manufacturing steps must begin again.

Understanding the critical role of the grinding operation in the shop’s manufacturing process, grinding machine makers continuously apply the best technical knowledge available to their machines. Often these are little innovations that help reduce the opportunities for inaccuracy to seep into the process. A typical example of such innovation is found in the Toyoda Machinery USA (Wixom, Michigan) line for grinding machine tools.

Most grinders actuate the machine tool’s axes using ballscrews. Precisely manufactured, ballscrews are a well-known and reliable means of moving machine tool components. Application of powerful CNC and fast feedback servo technology make the ballscrew accurately responsive to very small motion commands.

In OD grinding there are two axes that come into play. The Z axis is generally the reciprocating table that carries the workhead, footstock and workpiece. The machine’s X-axis moves the wheelhead, or heads, into the work zone. In many applications these two axes are used in concert to profile grind the workpiece.
The ballscrews that actuate these axes are engineered to be stiff and manufactured to be straight. In reality though, no ballscrew is infinitely stiff or perfectly straight. These deviations from perfect are runout. An exaggerated analogy of ballscrew runout is rolling a bent cue stick on a pool table.

In operation there are two primary sources for ballscrew runout. Dynamic runout, which is also called “wind-up,” is caused when a ballscrew deflects slightly as it overcomes inertia. Static runout is the ballscrew’s deviation from perfectly straight.

To compensate for these realities, Toyoda uses a patented device they call a floating plate. It’s designed to prevent transfer of ballscrew runout to the Z-axis table or X-axis wheelhead by absorbing the runout.

The mechanism is mounted under the slide and on the base of the machine. Both X and Z-axis ballscrews are supported. Instead of coupling the ballscrew directly to the machine’s moving element through a rigidly mounted ballnut, the ballscrew is connected to the table or wheelhead using a floating plate.

Imperceptible movements between the ballscrew and the floating plate compensate for misalignment that could result when the grinding wheel makes contact with the part. The design of this plate allows the screw to oscillate in a radial direction, which prevents any runout from affecting the moving components. Maintaining tolerances and eliminating bind between the moving element and the ballscrew helps ensure precision grinding.

Granted, the effects that the floating plate neutralizes are generally very small. But in precision grinding, inaccuracy is an accumulation of very small effects. Eliminating as many as possible will result in a more precise and predictable grinding process. And that, after all, is the goal.—GCK

YCM Alliance
Campro USA
SW North America, CNC Machines and Automation
VERISURF
Paperless Parts
More blasting. Less part handling.
DN Solutions
KraussMaffei
MMS Made in the USA
World Machine Tool Survey
Hurco
SolidCAM

Related Content

Sponsored

Volumetric Accuracy Is Key to Machining James Webb Telescope

To meet the extreme tolerance of the telescope’s beryllium mirrors, the manufacturer had to rely on stable horizontal machining centers with a high degree of consistency volumetric accuracy.

Read More
Five-Axis

CNC Machine Shop Honored for Automation, Machine Monitoring

From cobots to machine monitoring, this Top Shop honoree shows that machining technology is about more than the machine tool.

Read More

Ballbar Testing Benefits Low-Volume Manufacturing

Thanks to ballbar testing with a Renishaw QC20-W, the Autodesk Technology Centers now have more confidence in their machine tools.

Read More
Sponsored

How to Mitigate Chatter to Boost Machining Rates

There are usually better solutions to chatter than just reducing the feed rate. Through vibration analysis, the chatter problem can be solved, enabling much higher metal removal rates, better quality and longer tool life.

Read More

Read Next

Sponsored

Increasing Productivity with Digitalization and AI

Job shops are implementing automation and digitalization into workflows to eliminate set up time and increase repeatability in production.

Read More
View From My Shop

Inside Machineosaurus: Unique Job Shop with Dinosaur-Named CNC Machines, Four-Day Workweek & High-Precision Machining

Take a tour of Machineosaurus, a Massachusetts machine shop where every CNC machine is named after a dinosaur! 

Read More
Sponsored

The Future of High Feed Milling in Modern Manufacturing

Achieve higher metal removal rates and enhanced predictability with ISCAR’s advanced high-feed milling tools — optimized for today’s competitive global market.

Read More
SW North America, CNC Machines and Automation