ProShop
Published

Data-Driven Manufacturing Deconstructed

"Data-Driven Manufacturing" can be broken into three areas for better understanding: the conceptual, the technical and the practical.

Share

Like many of us, I am sometimes baffled by the barrage of new terminology linked to current developments in how computers and computer networks are being used in factories and machine shops. We’re using labels such as Industry 4.0, Industrial Internet of Things, digital manufacturing, smart factories and many other names. I’ve been favoring the term data-driven manufacturing to refer to this whole area simply because the words are familiar and easy to explain (“Data-driven manufacturing means better decisions about processes and procedures,” I like to say).

At one time (20-25 years ago or so), the term computer-integrated manufacturing (CIM) was in vogue. CIM went away, mostly because the computers and software available in those days were simply not up to the application. There was no internet; the personal computer was just appearing. Otherwise, CIM was a useful term because integration was understood to mean “connected for more effective interaction,” which is still our goal today.

Lately, however, I have found it useful to sort out pronouncements, product news and discussions about all this stuff along these lines: Is the focus on the conceptual, the technical or the practical? The graphic at the top of this page shows how this classification works. Each panel lists representative entries, in no particular order.

Under conceptual, I group the big-picture, theoretical, futuristic words and phrases. When people talk or write about Industry 4.0, for example, I try to discern the vision underlying the comments. In other words, what will manufacturing look like, according to this source? What do they “see?” I call this the WHAT category.

Under technical, I group the interoperability standards, innovations in computer hardware and sensors, programming codes and new software technology that are necessary to make the conceptual come about. This is the HOW category. These developments explain how Industry 4.0 can be achieved. Personally, I find this category the most challenging, partly because it is filled with unfamiliar jargon and acronyms, and partly because it brings up nitty-gritty issues on highly specialized levels. Although it may not be necessary to understand the details or fine points of developments in this category, it is certainly helpful to be aware of the significance of them.

Under practical, I group the main applications or benefits promised by the work in the conceptual and technical fields. This is the WHY category. These are the compelling reasons for moving ahead with bold implementations of data-driven manufacturing. These are the rewards for heeding the visionaries and supporting the technicians. These are the justifications for embracing the changes and disruptions imposed by the WHAT and the HOW. We should keep these benefits and breakthroughs in mind, because they give us the energy and urgency to sustain progress.

I could have added one more category—the WHO. This would be a list of the national and international programs, federal agencies, standards-making organizations and trade associations that are shaping the vision, creating the building blocks and offering end products by which the manufacturing industry will advance. Instead, let me end here by simply suggesting that the most important entry in this category is the ultimate agent of change: YOU.

HCL CAMworks
ProShop
SmartCAM
Surface finishing in Fusion
Formnext Chicago on April 8-10, 2025.
Techspex
Paperless Parts
Discover a variety of the best CNC machines
DN Solutions
Gardner Business Intelligence
World Machine Tool Survey
Hurco

Related Content

Leveraging Data to Drive Manufacturing Innovation

Global manufacturer Fictiv is rapidly expanding its use of data and artificial intelligence to help manufacturers wade through process variables and production strategies. With the release of a new AI platform for material selection, Fictive CEO Dave Evans talks about how the company is leveraging data to unlock creative problem solving for manufacturers.

Read More
Sponsored

Finally, A Comprehensive Software Solution Designed for Small Job Shops

Zel X from Siemens is an integrated software application that consolidates collaboration, design, manufacturing, and operations into a comprehensive, easy-to-use solution. From RFQ to delivery, it’s a more efficient way to handle quotes, manage jobs, make parts, and collaborate with teams of all sizes.

Read More

Shop Quotes Smarter, Works Harder with Machine Monitoring

Temco first installed MT-LINKi to optimize quoting. Now, the software helps the shop optimize its machines — and machine purchases.

Read More

Diving Deeper Into Machine Monitoring Data

Data visualization is the first step in using machine monitoring data, but taking it to the next level requires looking for trends within the data.

Read More

Read Next

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More
ProShop