SmartCAM
Published

CAM Benefits Extend Beyond the Tool Path

This CAM software not only provides an effective tool path strategy, but also takes application-specific variables into account when applying that strategy.

Share

CAM software strategies that define how a tool moves through a part can have a profound impact on machining efficiency. By themselves, however, even the most advanced tool paths don’t account for some of the unique circumstances that dictate how machinists cut parts in real-world manufacturing situations.
 
That said, why should the role of CAM software stop with the tool path? What if the software could not only generate an effective strategy for tool motion, but also intelligently apply that strategy according to application-specific variables? That’s precisely the idea behind iMachining CAM software from SolidCAM (Washington Crossing, Pennsylvania).
 
Many of the software’s purported benefits—primarily deeper, faster and more efficient cutting with less wear and tear on tools and machines—result from a toolpath strategy designed to keep the mechanical and thermal load on the cutter constant. However, what truly sets the system apart is a proprietary algorithm that automatically determines feeds, speeds, stepovers and cutting depths for a given job based on attributes specific to the machine, cutting tool and workpiece, says Chris Calderone, iMachining product manager. This reduces programming time and eliminates the typical trial-and-error approach to optimizing cutting parameters, not to mention the broken tools and scrapped parts that can entail. Moreover, the software enables users to quickly and easily adjust those parameters to machine more cautiously or aggressively depending on the particulars of their situation.
 
Mr. Calderone contends that this approach to determining parameters is more sophisticated than pulling recommended speeds and feeds from an Excel spreadsheet or similar database. Rather, iMachining relies on the user to define the specific machine, cutting tool and workpiece material for a particular job via an interface known as the “Technology Wizard.” This requires entering relatively few key attributes—a machine’s horsepower, rigidity and maximum feed and speed, for example—and the software uses information from tool and material libraries to avoid duplicate data entry, Mr. Calderone says. The user then adjusts a slider to determine how aggressively to machine on a scale of 1 to 8. The algorithm takes all of that input into account to determine feeds, speeds and stepovers. If one variable changes, the others adjust automatically to stay in sync without pushing the equipment beyond its limitations. For example, if the user selects a shallower cutting depth to machine a part in two passes instead of one, feeds, speeds and stepover will increase accordingly.
 
The ability to adjust cutting aggressiveness on a sliding scale is especially valuable because ideal cutting parameters vary from job to job, says Anthony Calderone, chief technical officer at SolidCAM. For example, he says, consider an application with less-than-rigid fixtures, or a scenario in which a shop on a tight delivery deadline must preserve its few remaining cutting tools to complete a part run. In such cases, shops are likely to start reducing speeds and feeds, whether through the program or at the machine. Simply adjusting the slider and letting iMachining determine cutting parameters enables users to forgo that potentially time-consuming and error-prone process, Mr. Calderone says. “We knew that people did this sort of thing all the time, and we wanted to build it into the system,” he explains.
 
This “intelligent” approach also extends to the tool path itself, Mr. Calderone says. Plotting tool motion in a way that avoids variations in tool load is nothing new. However, iMachining takes workpiece geometry into account when plotting this motion. The result is a path that keeps the tool engaged in the cut and avoids air cutting and repositioning moves that can stress the cutter and add time to the process, he says.
 
SolidCAM refers to this tool path as a “morphing spiral.” As that name implies, the path proceeds in a looping motion that keeps the tool engaged while avoiding sudden changes in direction. However, only the interior of the spiral is circular. The outer portion conforms to the geometry of the workpiece feature being machined. As machining proceeds, the path “morphs” from the geometric contour to a pure circle or vise versa depending on whether the cut begins at the outer or inner portion of the spiral. When the area to be machined is impossible to cut with a single spiral, the software automatically sub-divides that portion of the geometry and separates channels and tight corners. Each sub-area can then be cut with its own spiral.
 
To accomplish this morphing, the software adjusts stepover at various points in the tool path—larger stepovers at thicker points along the spiral, smaller stepovers at thinner points, never exceeding maximum and minimum values specified by the user, Mr. Calderone says. The software also uses stepover adjustments to keep an equal portion of the cutter engaged in the material at all points in the tool path. This maintains a consistent tool load. When these goals contradict each other—for example, when thinner areas of the spiral’s contour call for a lower stepover value that would otherwise cause a sudden decrease in tool load—the software adjusts feed rates to compensate. (Click the link under "Editor's Picks" in the upper right of this screen to see video of a spiral morphing tool path.)
 

Chris Calderone stresses that far from being limited to 2 1/2-D pocketing, these tool paths can be applied in virtually any machining situation (see "Editor's Picks" in the upper right of this screen for a link to a video demonstrating an iMachining tool path applied on a mill-turn application). The morphing spiral approach is also equally effective in roughing, semi-finishing and finishing operations. However, iMachining’s greatest benefit is the time and cost savings of applying that strategy in a way that meets specific goals particular to specific applications, Mr. Calderone says. “Yes, there is a tool path at the heart of it, but the big difference with iMachining is that it just works, regardless of what the variables are,” he concludes.  

HCL CAMworks
ProShop
SmartCAM
Surface finishing in Fusion
An ad for Formnext Chicago on April 8-10, 2025.
High Accuracy Linear Encoders
MMS Made in the USA
Hurco
SolidCAM
Universal Homepage Package W4900 Indicator
VERISURF
JTEKT

Related Content

Measurement

6 Machine Shop Essentials to Stay Competitive

If you want to streamline production and be competitive in the industry, you will need far more than a standard three-axis CNC mill or two-axis CNC lathe and a few measuring tools.

Read More

When Handing Down the Family Machine Shop is as Complex as a Swiss-Turned Part

The transition into Swiss-type machining at Deking Screw Products required more than just a shift in production operations. It required a new mindset and a new way of running the family-owned business. Hardest of all, it required that one generation let go, and allow a new one to step in.

Read More

5 Reasons Why Machine Shop Ownership Is Changing

Mergers, acquisitions and other ownership changes are an effect of Boomer-age shop owners retiring, but only in part. Also important: The way we think about machining has changed.    

Read More
Sponsored

How this Job Shop Grew Capacity Without Expanding Footprint

This shop relies on digital solutions to grow their manufacturing business. With this approach, W.A. Pfeiffer has achieved seamless end-to-end connectivity, shorter lead times and increased throughput.

Read More

Read Next

Turning Machines

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
ProShop