YCM Alliance
Published

Buying a Lathe: Spindles and Tailstocks

A key consideration when buying a new turning machine involves its spindle. Here’s an overview of what you need to know. 

Share

After considering what sorts of workpieces your turning machine will need to handle, and taking a good look at tooling options, it’s a good time to cover what kinds of spindles lathes might have, and what factors are good to keep in mind when choosing a new machine. 

Belt-Driven or Direct-Drive Spindles

The spindle on a turning center is either belt-driven or direct-drive. Generally, belt-driven spindles represent older technology. They speed up and slow down at a lower rate than direct-drive spindles, which means cycle times can be longer. If you’re turning small-diameter parts, the time it takes to ramp the spindle from 0 to 6,000 rpm is significant. In fact, it might take twice as long to reach this speed than with a direct-drive spindle.

A small degree of positional inaccuracy may occur with belt-driven spindles, because the belt between the drive and the positional encoders creates a lag. With integral direct-drive spindles, this is not the case. Ramping up and down with a direct drive-spindle happens at a high rate, and the positional accuracy also is high, a significant benefit when using C-axis travel on live-tooling machines.

A2 Spindle Noses

Lathes are designed to have an American Standard spindle nose on the front of the spindle motor. Tapered spindle noses come in various sizes to hold the chuck or threaded spindle mount. A2 and B2 are both short-taper spindles; the only difference between them is the method in which the chuck is mounted. Type L refers to long-taper spindles, and Type D features a camlock mounting used on many engine-lathe spindles.

The good news is, your machine tool manufacturer has the spindle nose selection worked out based on the size of the chuck, diameter of barstock you intend to machine and the horsepower needed. The spindle nose will be properly sized for the machine.

Spindle Speeds, Horsepower and Torque

Today’s CNC lathes are designed for specific ranges of stock diameters. Basically, you buy a machine to cut a specific, maximum workpiece diameter. If you’re cutting 2-inch-diameter barstock, the machine will be designed for running small diameters using higher-speed, 6,000-rpm spindles, and with the right amount of horsepower and torque.

Generally, big lathes have high torque (twisting power) due to the weight of the mass spinning in the chuck. As a rule, the bigger the workpiece and the slower the spindle speed, the more torque required.

If the parts you are running require a machine with a 10-inch, big-bore chuck, the spindle will be designed to deliver slower speeds at more horsepower. This creates the torque to take bigger cuts for more stock removal. As the cutter gets closer to the center of the stock, the machine will automatically speed up to, say, 700 rpm to maintain the proper surface footage. Obviously, it doesn’t make sense to use a big-bore lathe to do small-diameter work.

The operation that typically requires peak horsepower is heavy-duty, inner-diameter work, such as using big drills to make holes in the barstock before finish-boring. In this case, Z-axis horsepower might be the limiting factor. For example, a 2-inch drill may require a 20-hp spindle motor to get the force needed to perform this operation.

Programmable Tailstocks

A built-in, numerically controlled tailstock can be a valuable feature for automated processes. A fully programmable tailstock provides more rigidity and thermal stability. However, the tailstock casting adds weight to the machine.

There are two basic types of programmable tailstocks—servo-driven and hydraulic. Servo-driven tailstocks are convenient, but the weight they can hold may be limited. Typically, a hydraulic tailstock has a retractable quill with a 6-inch stroke. The quill also can be extended to support a heavy workpiece, and do so with more force than a servo-driven tailstock can apply. This is an advantage if you’re machining a piece that weighs, let’s say, 2,000 pounds. Using the programmable tailstock to push the part helps support its weight in the chuck.

This is part three of a four-part series about buying turning machines. 

 Find more insights about acquiring a new machining center by visiting the Techspex Knowledge Center, “Guide to Buying Machine Tools.”

YCM Alliance
The Automated Shop Conference
MMS Made in the USA
BIMU 2024
Hurco
SolidCAM
OASIS Inspection Systems
Techspex
DNS Financial Services America
IMTS 2024
Gardner Business Intelligence
Universal Homepage Package W4900 Indicator

Related Content

4 Tips for Staying Profitable in the Face of Change

After more than 40 years in business, this shop has learned how to adapt to stay profitable.

Read More
Sponsored

Quick-Change Tool Heads Reduce Setup on Swiss-Type Turning Centers

This new quick-change tooling system enables shops to get more production from their Swiss turning centers through reduced tool setup time and matches the performance of a solid tool.

Read More
Sponsored

3 Tips to Accelerate Production on Swiss Lathes with Micro Tools

Low RPM lathes can cause tool breakage and prevent you from achieving proper SFM, but live tooling can provide an economical solution for these problems that can accelerate production.

Read More
Turning Machines

Buying a Lathe: The Basics

Lathes represent some of the oldest machining technology, but it’s still helpful to remember the basics when considering the purchase of a new turning machine. 

Read More

Read Next

Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
YCM Alliance