YCM Alliance
Published

Buying a Grinder: Latest Technological and Process Developments

Grinders have advanced in recent years with both technological and process improvements. Here is a rundown of some of those improvements.

Share

Whereas previous posts have discussed grinding machine construction, the abrasive process and various industries’ applications of grinding technology, this post looks at recent developments in grinding processes and machine designs. 

In-Process Gaging for Closed-Loop Grinding

Closed- loop, in-process gaging is an option for measuring diameters and other features such as length during the machining cycle. For cylindrical grinding, electronic probes or gage heads may be mounted on the table, on slides or in the indexing turret to access the part being measured. In-process gaging of multiple diameters or dimensions can be accomplished using multiple gage heads or multiple slides, all using the same gage readout.

By using a precision ring gage of a known size, gage fingers can detect the precise workpiece diameter, then touch the top and bottom of the part diameter to feed results to the control system to command the machine to stop or to continue grinding until the exact diameter size is achieved.

For tool and cutting grinders, closed-loop gaging is quite remarkable because of the complicated geometry of most cutting tools. Grinding flutes and complex surfaces, such as the helixes on cutting tools that can vary widely by design, requires equally sophisticated, odd-shaped touch-probe styli to access the tool surface. Worn cutters can be easily restored by using the gage to instruct the machine when to retract during the regrinding cycle.

Machine Design Developments

Advancements in grinder design are producing high-precision, high-output, exceptionally fast grinders. The operation is becoming more automated, and the skill level of the experienced grinding operator is being embedded in the CNC control so that almost any machine operator can produce consistent, accurate parts.

Backlash-free, direct-drive linear motors are replacing ballscrews. Linear drives enable the machine to move exceptionally quickly, perform precise contouring and provide vibration damping in all in-feed axes, thus resulting in better grinding performance, better surface finish and greater precision.

Likewise, there is a move toward faster, integral spindle drive motors with high-frequency air bearings capable of running between 80,000 and 120,000 rpms while maintaining a constant torque curve throughout the speed range. Elsewhere in machine design, direct-drive motors are replacing drive belts to gain better machine control, higher speed and better precision.

Automatic Grinding Wheel Balancing

Auto-balancing of the grinding wheel while the spindle is running is another notable development. It uses a sensor that disperses weight to balance the wheel automatically to adjust for uneven distribution of wheel mass. Grinding wheels can sometimes become unbalanced because oil or coolant becomes trapped in portions of the wheel, whereas a balanced grinding wheel provides higher cutting rates, reduced cycle times and finer surface finishes.

Grinder CNCs

Control units on today’s grinders have more options and more automatic functions to assist the operator. For example, auto dressing with compensation enables the machine to go right back into the cut after dressing. CNC units with touchscreen capability and teach functions enable the operator to skip typing in data manually.

YCM Alliance
Gardner Business Intelligence
DN Solutions
SolidCAM
Gravotech
MMS Made in the USA
Formnext Chicago on April 8-10, 2025.
BIMU 2024
World Machine Tool Survey
EZ Access - Have it all with Ez - Mazak
Paperless Parts
An ad for Formnext Chicago on April 8-10, 2025.

Related Content

Sponsored

How to Reduce Cycle Times by 70% and More on Your Existing CNCs and Dramatically Improve Tool Life Too

By employing advanced high efficiency milling techniques for the entire machining routine, SolidCAM’s iMachining technology can drastically reduce cycle times while vastly improving tool life compared to traditional milling.

Read More
Turn/Mill

How to Start a Swiss Machining Department From Scratch

When Shamrock Precision needed to cut production time of its bread-and-butter parts in half, it turned to a new type of machine tool and a new CAM system. Here’s how the company succeeded, despite the newness of it all. 

Read More
Turning Machines

Romi Launches Flatbed Lathe for Machining Large Parts

The C 1100H is a heavy-duty flatbed lathe built with a monoblock cast iron bed that absorbs machining efforts and vibration, making it highly rigid, stable and accurate.

Read More
Five-Axis

An Additive Manufacturing Machine Shop

Finish machining additively manufactured implants requires different pacing and workflow than cutting parts from stock — different enough for an experienced manufacturer to warrant a dedicated machine shop.

Read More

Read Next

Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
YCM Alliance