Workholding from Mate Precision Technologies
Published

A New Approach to Tool Presetting

This non-contact presetter has a number of design elements that enable it to perform effectively on the shop floor. It looks and operates differently than other presetters currently available, too.

Share

Leaders-In background

 

Using a presetter to accurately measure the true lengths and diameters of tools installed in their holders can greatly reduce setup times for new jobs. That’s because presetting tools for one job while a machine is running another eliminates the need to spend time touching off tools and running test cuts. The ROI for a presetter comes from higher spindle utilization and less machine downtime.
 
Shops get the most out of presetters when those measuring devices are located on the shop floor close to the machines. This minimizes tool transport time and travel throughout the shop. Knowing this, manufacturers of presetters focus their efforts on designing devices that will function accurately and reliably in environments that aren’t always the cleanest or most thermally stable.
 
One example is the new Airmatrix non-contact presetter for milling and turning tools from DMG/Mori Seiki. Andre Jesse, a product sales manager for the company, says the Airmatrix has a number of design elements including minimal moving parts that enable it to perform effectively on the shop floor. It looks and operates differently than other non-contact presetters currently available, too.
 
For instance, the sensing unit on many non-contact presetters is attached to the base of the device and travels on guideways to measure the tool installed in the device’s spindle. In most cases, the sensing unit’s horizontal and vertical position is determined by feedback from glass scales. However, the optics for the Airmatrix are contained in a freely moveable sensing unit supported by an air bearing, Mr. Jesse explains. This enables users to easily glide the sensing unit across a thermally stable, bulletproof glass plate to measure the tool mounted in a horizontally oriented spindle. The sensing unit’s position on the plate is determined by a CCD camera that reads tiny, two-dimensional data matrix codes embedded in the glass plate. In effect, the glass plate is the device’s “scale.” High positioning accuracy for the sensing unit is possible because the data matrix codes have high information storage capacity.
 
Because the glass plate lies flat atop the device’s cast iron bed, it is less likely to be affected by base expansion than conventional glass scales housed in aluminum bodies, Mr. Jesse says. In addition, the sensing unit’s air bearing (which activates whenever the user touches the unit to move it) helps clean the scratch-resistant glass by blowing away dirt and debris.
 
The Airmatrix presetter provides tool measurement accuracy of ±2 microns and is available in two sizes. One version accommodates tools as big as 200 mm in diameter and 500 mm in length. The other can measure tools as large as 400 mm in diameter and 1 meter in length. The device uses the company’s Windows-based Microvision V control. Developed specifically for the Airmatrix, this control features an intuitive, touchscreen interface and enables cutting edge inspection with live image display. Measurement routines can be performed manually or automatically in which the spindle rotates at a fixed rate. A built-in printer enables users to print labels with offset information and affix them to tools. Users also have the option of downloading tool offset information directly to the machine.

 

Mate Workholding - Accuracy and Repeatability
Metal Forming Complex Parts
IMTS+
Have it all with Mazak Ez Series Machines
DN Solutions
PMTS 2025 Register Now!
JTEKT
Starrett W9400 Touch Screen Indicator

Related Content

Measurement

4 Ways to Establish Machine Accuracy

Understanding all the things that contribute to a machine’s full potential accuracy will inform what to prioritize when fine-tuning the machine.

Read More
Measurement

The Link Between CNC Process Control and Powertrain Warranties

Ever since inventing the touch-trigger probe in 1972, Sir David McMurtry and his company Renishaw have been focused on achieving process control over its own manufacturing operations. That journey has had sweeping consequences for manufacturing at large.

Read More

Choosing the Correct Gage Type for Groove Inspection

Grooves play a critical functional role for seal rings and retainer rings, so good gaging practices are a must.

Read More
Five-Axis

6 Machine Shop Essentials to Stay Competitive

If you want to streamline production and be competitive in the industry, you will need far more than a standard three-axis CNC mill or two-axis CNC lathe and a few measuring tools.

Read More

Read Next

Registration Now Open for the Precision Machining Technology Show (PMTS) 2025

The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.   

Read More
CNC & Machine Controls

Setting Up the Building Blocks for a Digital Factory

Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.

Read More

5 Rules of Thumb for Buying CNC Machine Tools

Use these tips to carefully plan your machine tool purchases and to avoid regretting your decision later.

Read More
Mate Workholding - No Interruptions or Surprises