Ceratizit Milling Tool Provides Reliable HRSA Machining
The MaxiMill – 211-DC indexable insert milling system features 3D-printed cooling channels.
Ceratizit has launched its new, additively manufactured MaxiMill – 211-DC indexable insert milling system with advanced coolant supply.
The MaxiMill – 211-DC was created through in-house additive manufacturing (AM) with 3D-printed cooling channels. Additive processes enable the shoulder mill to funnel the maximum amount of coolant directly on the insert flanks. In turn, it provides process reliability when machining heat-resistant super alloys (HRSA).
The MaxiMill – 211-DC has 60% longer tool life compared to tools with standard cooling, according to the company. Further, despite the complexity of the coolant holes inside the tool body, the MaxiMill – 211-DC is compatible with standard adapters with through-coolant supply without requiring any standard coolant on the chipbreaker.
“We put additive manufacturing to work for our customers and to achieve results that are only possible when we push boundaries,” says Dan Cope, president of the Americas for Ceratizit Group. “Titanium and other super alloys are unconventional materials that require unconventional strategies.”
Related Content
-
How to Troubleshoot Issues With Tool Life
Diagnosing when a tool is failing is important because it sets an expectation and a benchmark for improvements. Finding out why gives us a clue for how to fix it.
-
Briquetting Manufacturer Tools Up for Faster Turnaround Times
To cut out laborious manual processes like hand-grinding, this briquette manufacturer revamped its machining and cutting tool arsenal for faster production.
-
How to Accelerate Robotic Deburring & Automated Material Removal
Pairing automation with air-driven motors that push cutting tool speeds up to 65,000 RPM with no duty cycle can dramatically improve throughput and improve finishing.