VERISURF
Published

Gaging Oldies But Goodies—A Review Of Some Things We Should Know By Now

Ten years ago this month, Quality Gaging Tips first appeared in Modern Machine Shop. Since that time, we have covered many tools and techniques for assuring accurate, repeatable measurement and gaging in machine shops.

Share

Leaders-In background

Ten years ago this month, Quality Gaging Tips first appeared in Modern Machine Shop. Since that time, we have covered many tools and techniques for assuring accurate, repeatable measurement and gaging in machine shops. So I thought it would be appropriate to double back and talk about some oldies but goodies—things we should know all too well by now, but sometimes overlook.

10:1 Rule. Whenever possible, the measuring instrument should resolve to approximately one-tenth of the tolerance being measured. So if the total tolerance spread is 0.01 mm (that is, ¦0.005 mm), the smallest increment displayed on the gage should be 0.001 mm. This amount of resolution allows you to make accurate judgments for borderline cases and makes it possible to observe trends within the tolerance band. Many people know of and can explain this rule, yet it can still sneak up on the best of us.

Simple SPC. It is amazing how many shops still don’t do SPC because they can’t afford digital gaging equipment or don’t have the right computers or software. One of the first SPC manuals was published by Federal Products in 1945, long before the digital revolution. It has gone through 14 printings. Back then, simple SPC empowered machine operators to keep their processes in control by showing them how to make simple charts and other visuals that gave them regular feedback.

SPC wasn’t conceived of as something you have to buy, but as something easy you can do. SPC can be that simple, or it can be very complex. By starting out on the simple side and taking just one step at a time, any shop can develop an SPC program to take it to the next level of manufacturing excellence. The trick is to get started. Later on, you can think about getting digital tools, more computers and software.

SWIPE. When results don’t live up to expectations, it’s easy to blame the gage. However, this outlook will rarely get you on the right track. A more helpful approach is to consider how good practices encompass a range of factors that can be summarized by a single acronym, SWIPE. The letters represent standard, workpiece, instrument, personnel and environment. Study how each of these might contribute to the effective use of gaging, and you will be on the path to setting up a solid gaging system.

How to Use a Rule. It is impossible to overemphasize how important it is to remember the basics. For example, one of the oldest and most pervasive of all measurement tools is the steel rule. But when was the last time you received any training in how to use it? The first grade?

What’s there to know, you ask? Plenty. You should know (1) rule styles: English or metric, rules with the zero point on the edge or inset a short way; (2) how to avoid parralax error; (3) how to use a stop, even if it’s your thumb, for better alignment; (4) how to start a measurement at a graduation instead of the edge; (5) how to measure similar parts from the same starting point and in the same direction for greater consistency; (6) the fine art of rotating the rule to get the longest dimension across a hole; (7) and when you need to use a more accurate measuring tool (See 10:1 rule above). If basic skills are so important for using something as mundane as a rule, imagine the influence they have on something more complex such as calipers.

The truth is that no matter how technologically advanced our manufacturing processes have become, we will never outgrow our need to revisit basic measurement. From the pyramids to the space station, measurement rules continue to be the foundation upon which anything of quality was ever built.

Okuma LB2000 EX III MYW
Campro USA
Milltronics INSPIRE Control
TCI
VERISURF
Starrett W9400 Touch Screen Indicator
IMTS+
MMS Made in the USA
SolidCAM
DN Solutions
PMTS 2025 Register Now!
RazorStar

Related Content

How to Evaluate Measurement Uncertainty

Manufacturing and measurement are closely coupled. An important consideration for the use of measurement results is the associated measurement uncertainty. This article describes common metrology terms and provides an example uncertainty analysis.

Read More

Ballbar Testing Benefits Low-Volume Manufacturing

Thanks to ballbar testing with a Renishaw QC20-W, the Autodesk Technology Centers now have more confidence in their machine tools.

Read More
Measurement

4 Ways to Establish Machine Accuracy

Understanding all the things that contribute to a machine’s full potential accuracy will inform what to prioritize when fine-tuning the machine.

Read More
Measurement

Rethink Quality Control to Increase Productivity, Decrease Scrap

Verifying parts is essential to documenting quality, and there are a few best practices that can make the quality control process more efficient.

Read More

Read Next

CNC & Machine Controls

Setting Up the Building Blocks for a Digital Factory

Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.

Read More

Registration Now Open for the Precision Machining Technology Show (PMTS) 2025

The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.   

Read More

5 Rules of Thumb for Buying CNC Machine Tools

Use these tips to carefully plan your machine tool purchases and to avoid regretting your decision later.

Read More
Okuma GENOS L3000-e MYW