See WENZEL at IMTS booth 134718
Published

Gaging Distance Between Hole Centers

Many of the gaging applications we've considered over the years involve size inspection of a single feature, that is, the diameter of a hole, depth of a groove, height of a gage block, and so on. Many parts, however, contain multiple features that establish dimensional relationships between two or more other parts.

Share

Many of the gaging applications we've considered over the years involve size inspection of a single feature, that is, the diameter of a hole, depth of a groove, height of a gage block, and so on. Many parts, however, contain multiple features that establish dimensional relationships between two or more other parts. Examples include engine blocks, with multiple cylinder bores that establish distances between pistons, and pump housings with two overlapping bores that establish clearance between two mating impellers. As with people, machined features tend to be simple and straightforward when they're single. When people or parts are in relationships, however (and especially when those relationships involve mating) things can get complicated.

Gaging the distance between hole centers is a good example, because it requires that you first locate those centers in space before you can measure the distance between them. Gaging equipment may vary widely with the application, and include considerations of part size and configuration, and required throughput and accuracy. But the basic idea remains the same across various technical approaches; you must first establish references between the part and the gage, often in three dimensions, before you can measure deviation from a specified distance between features.

A basic approach is a hand-held gage, like that shown in the figure. Both of the plugs have two fixed contacts, and one spring-loaded contact each, so they automatically center themselves in their respective holes. One of the plugs is a fixed reference; the other is a sensitive contact. Note also the hard depth stops, establishing a reference in the third dimension. The sensitive plug moves relative to the fixed plug on a frictionless device such as a pantograph mechanism or an air-bearing carriage for good repeatability. The sensing/indicating device used to measure deviation may be a simple dial or digital indicator, or an electronic probe and amplifier.

This gage is economical, reliable, and easy to use. It may be employed with parts as large as an engine block (or larger), or as small as a connecting rod, and its capacity may be adjustable to measure different distances. The plugs may be replaceable, to accommodate different size holes. Its limitation is that it only measures distances between centers; no other types of features or relationships may be checked.

The next option is a gaging fixture engineered for a specific part. Such gages are generally benchtop devices, so they are limited to use with relatively small parts (that is, automotive conrods) that can be brought to them. The workpiece is typically located over fixed plugs, each of which may contain one or more air or electronic probes as sensing devices. Fixture gages may offer limited adjustability, but tend to be very application-specific.

The benefit side of the coin, however, is substantial. Fixture gages tend to be very stable, and allow high throughput rates. Because the probes can be spaced quite densely within the fixture, it is possible to measure multiple features or characteristics simultaneously. For example, a conrod gage with sixteen probes (eight each for the wrist pin and the crankshaft bores) can be engineered to measure the following features, in addition to center distance between bores: four diameters per bore (6:00 to 12:00, and 3:00 to 9:00, at both top and bottom), bore "out of roundness" (that is, the difference between two diameters at right angles), bore taper, and bend and twist between bores. Gaging computers and some amplifiers can be readily programmed to perform all these measurements without changing the gaging setup.

VERISURF
See WENZEL at IMTS booth 134718
Gardner Business Intelligence
World Machine Tool Survey
Discover a variety of the best CNC machines
Gravotech
DN Solutions
OASIS Inspection Systems
JTEKT
BIMU 2024
Formnext Chicago on April 8-10, 2025.
The Automated Shop Conference

Related Content

Determining Out-of-Roundness at the Point of Manufacture

George Schuetz, Mahr Inc.’s Director of Precision Gages, offers these techniques for measuring roundness on the shop floor.

Read More
Measurement

A Case for Combining Workholding with Optical Scanning

Automotive dies and die inserts are often complex, one-off parts with little room for error. Integrity Tool's investments in modular workholding tools and 3D optical scanning have allowed the company to create niche capabilities for its CNC machined parts.

Read More

Ballbar Testing Benefits Low-Volume Manufacturing

Thanks to ballbar testing with a Renishaw QC20-W, the Autodesk Technology Centers now have more confidence in their machine tools.

Read More
Measurement

What Should Machinists Know About In-Machine Probing?

In-machine probing doesn’t reach the power of CMMs but can still be useful for pre- and mid-process control, as well as for “rough screening” of parts.

Read More

Read Next

Turning Machines

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
See WENZEL at IMTS booth 134718