VERISURF
Published

Assessing Gage Stability

Gage stability implies different things in different contexts. If taken literally, it may refer to whether there is something loose on the gage, or some other gage problem occurs randomly, to cause two identical trials to produce different results.

Share

Gage stability implies different things in different contexts. If taken literally, it may refer to whether there is something loose on the gage, or some other gage problem occurs randomly, to cause two identical trials to produce different results. When plotted on a histogram, this type of instability shows up as a distortion of the expected bell-curve shape—perhaps in the form of dual modes (i.e., high points) with a dip in between, or in a mode that is skewed toward one end of the tolerance range or the other.

Other types of stability are best assessed and visualized through the use of control charts, in which measurements of several small lots, each represented by a histogram, are compared over a period of time. A single, certified master or other qualified part should be used for the entire series of repeated trials. This serves to eliminate part-to-part error as a variable, so remaining variation will likely be low. Nevertheless, testing may show that variation between lots becomes significant enough over an extended period so as to constitute a measurement problem.

"Statistical stability" refers to the consistency of the measuring system's performance from lot to lot. If a gage is statistically stable, each lot or histogram will be nearly identical in shape and range (R), and the average value (X-bar) of subsequent lots will be close to one another. If it is statistically unstable, the histograms will vary in terms of their X-bar or R values, or both.

Figure 1 shows statistical instability of both sorts. The histograms vary considerably in their ranges and shapes, while the mean dimensions are clearly irregular from lot to lot.

"Long-term" and "short-term" stability are confusing, because both require a long-term effort to assess. Both describe trends in the X-bar or R values across multiple lots. If we were to draw a line connecting the X-bar value of each histogram in Figure 1, we would observe no clear trend. Thus, we cannot make a meaningful assessment of either long- or short-term stability.

In Figure 2, the R values are nearly identical, and the X-bar values are grouped much more closely, so the gage is statistically stable. A line connecting the X-bar values would show a clear trend along the nominal value, so we have good long-term stability. This chart shows realistically how the performance of a good, stable gage looks.

Figures 3 and 4 both show good statistical stability. But in Figure 3, there is a short-term stability problem, with a bias in the plus direction. After a few sets of trials, however, the measurements become stable and remain so over the long term. The problem may be due to a warm-up condition in the gage itself. Or it might be the result of contamination that has settled on the gage over night. The X-bar value shifts as the contaminant is dispersed, due to mechanical interaction between the gage and the samples being measured. After a few dozen trials, all the contaminant is dispersed and the measurements become stable.

Figure 4 illustrates the opposite situation. The gage is stable on startup and over the short term, but over the longer term it becomes unstable as the X-bar values begin to drift upward. This might be the result of external thermal influences. If performance were to be charted over a longer period, the X-bar values might drift back toward nominal again; this might indicate the gage is responding as the plant warms up in the morning, then cools down toward evening.

It is important to check gages for stability, in order to avoid making inappropriate adjustments to the manufacturing process. In some cases, solving the problem may be as simple as establishing a more frequent schedule for remastering the gage. In others, it could require a reevaluation of the entire gaging process.

VERISURF
See WENZEL at IMTS booth 134718
Hurco
OASIS Inspection Systems
Universal Homepage Package W4900 Indicator
DN Solutions
BIMU 2024
VERISURF
SolidCAM
Discover a variety of the best CNC machines
Koma Precision
The Automated Shop Conference

Related Content

Ballbar Testing Benefits Low-Volume Manufacturing

Thanks to ballbar testing with a Renishaw QC20-W, the Autodesk Technology Centers now have more confidence in their machine tools.

Read More
Basics

6 Machine Shop Essentials to Stay Competitive

If you want to streamline production and be competitive in the industry, you will need far more than a standard three-axis CNC mill or two-axis CNC lathe and a few measuring tools.

Read More

What Should Machinists Know About In-Machine Probing?

In-machine probing doesn’t reach the power of CMMs but can still be useful for pre- and mid-process control, as well as for “rough screening” of parts.

Read More

How to Calibrate Gages and Certify Calibration Programs

Tips for establishing and maintaining a regular gage calibration program.

Read More

Read Next

Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More
VERISURF