SMW Autoblok Stationary and Automation Products
Published

Updated Workholding Improves Turning Performance And Speed

Many shops maintain old workholding on their lathes, and there is a loss of opportunity to increase productivity and repeatability. Workholding tends to be an afterthought. In reality, workholding can increase performance a great deal.

Share

Many shops maintain old workholding on their lathes, and there is a loss of opportunity to increase productivity and repeatability. Workholding tends to be an afterthought. In reality, workholding can increase performance a great deal. Dana (Magog, Quebec), one of the world’s largest suppliers to vehicular manufacturers, recently rethought its existing workholding when it redesigned its SPL yoke. Located within the universal joint of the drive shaft, Dana’s SPL yoke helps to increase the life of a vehicle’s driveshaft to 500,000 miles. Dana currently produces 2,000 yokes per week. Later this year, at full production, the company expects to produce 5,000 weekly.

Given the irregular shape of its workpiece, Dana engineers found it difficult to form a completely secure grip. Previously, the manufacturer had been using an oversized four-jaw chuck that relied on fixtures for centering the workpiece on the second axis after the initial set of jaws had gripped. Along with limited turning speeds, Dana had to accept the tolerances based on the old fixturing.

“(To review workholding options) I searched the Internet,” explains Eric Fortier, process engineer, Dana Canada Inc. Some of the information he found was from Kitagawa (Schaumburg, Illinois). “I followed Kitagawa’s Chuck Selection Guide and then called to speak with a Kitagawa engineer. He agreed I should use a four-jaw chuck.” Kitagawa’s HW Series and its 2 + 2 jaw configuration is recommended especially for use with irregularly shaped workpieces. The HW Series chuck can position, or center, a part on two axes.
Dana decreased cycle times from 50 to 35 seconds per part, increased turning speeds and improved repeatability with the incorporation of Kitagawa/NorthTech Workholding Inc.’s HW-10 two-stage, four-jaw power chuck.

The HW Series’ configuration, where two pairs of two jaws self center independent of one another, translates into tighter tolerances and greater repeatability. In the case of Dana, the first set of jaws is non-gripping. These jaws eliminate five degrees of freedom as centering pins are positioned into two shaft holes that were machined in a previous operation. At maximum stroke, they allow 0.002 inch to 0.003 inch of clearance (on the ear width). The second set of opposing jaws employs carbide grippers to grip the rough forging between the connection ears and to self-center the part radially, eliminating the sixth and final degree of freedom.

For Dana, one chuck and a base jaw setup have been designed to hold three different drive shaft yokes. The base jaw moves along the serrations, and the top jaws are changed out. V-blocks facilitate the loading of the 15- to 25-pound forgings. These blocks match the positioning tooling used in the original machining of the drive shaft holes. Along with machining the lead into the holes, the V-blocks allow the non-gripping pins to accurately engage and position the forging. After the forging has been machined, the pins disengage. To accomplish this, Kitagawa engineers designed a part retainer to slip between the ears of the forging and prevent it from walking or sticking to the pins as they retract. This part retainer is adjustable to accommodate all three forgings.
What’s more, the HW weighs less than Dana's former workholding, contributing to a faster ramp up speed for the manufacturer. “Because the stroke needed per jaw (8 mm) was longer than standard, Kitagawa suggested a special hydraulic cylinder,” says Mr. Fortier. Kitagawa engineers recommended a two-stage independent cylinder for Dana’s application.

“Using this cylinder, one piston controls one set of jaws, while a second piston operates the other set. Since each piston operates off of a separate hydraulic line, we were able to sequence them through a timer. This ensures that the non-gripping jaws are fully engaged (and that the part is properly positioned) before the gripping jaws begin to grip the casting,” says Tim Winard, Kitagawa/NorthTech Workholding, Inc. engineering manager.

SMW Autoblok Stationary and Automation Products
High Accuracy Linear Encoders
Hurco
DNS Financial Services America
OASIS Inspection Systems
Gardner Business Intelligence
The Automated Shop Conference
Discover a variety of the best CNC machines
Formnext Chicago on April 8-10, 2025.
SolidCAM
EZ Access - Have it all with Ez - Mazak
DN Solutions

Related Content

Workholding

When To Use A Collet Chuck

Don't assume the standard chuck is the right workholding for every lathe application.

Read More
Workholding

Using Automation to Reduce COGS and Stay Globally Competitive

Decade-long, multiphase automation investments lower operating costs and maintain technology lead in an increasingly competitive global market.

Read More
Workholding

Using Jaws as Grippers Enables Flexible, Low-Cost Automation

VersaBuilt’s automation systems significantly boosted Innovative Fabrication’s revenue. In return, the shop has helped VersaBuilt optimize its products.

Read More
Sponsored

Modern Bar Feeds Bring New Life to Automatic Swiss Lathes

Cam-actuated Swiss lathes are still the fastest way to process many parts. By adding modern bar feeders, this shop has dramatically improved their utilization with the ability to work unattended, even in a lights-out environment.

Read More

Read Next

Turning Machines

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More
SMW Autoblok Stationary and Automation Products