CERATIZIT OptiLine Solid Carbide End Mills
Published

The Value Of Indexable-Insert Center Drills

This indexable-insert center drill, said to be an industry first, combines the drilling performance advantages of solid carbide with the positioning repeatability and quick-change benefits common to indexable-insert tooling.

Share

 

A shop’s production levels are commonly taken into consideration when evaluating different types of cutting tools for a given operation. Consider center drills, which create a hole in the end of a workpiece with a specific diameter, depth and form to receive a lathe or grinding machine’s supporting center. Preliminary center drilling operations must be performed on all long workpieces before they can be turned or ground.
 
The two most popular types of center drills are HSS and solid carbide. Cost-effective HSS center drills tend to work fine for shops performing just a modest amount of high L:D turning or grinding. Such shops may consume only a few center drills each month. More expensive solid carbide center drills can be attractive to shops that process larger batches, allowing them to drill at higher speeds and feeds and to experience longer tool life. Both types, however, require some sort of measurement routine when changing a worn center drill so that a fresh one drills to the proper depth. (This might be done using a tool presetter or an in-process gage.) Maintaining the specified center hole depth throughout a production run is critical to ensure that a grinding wheel, for example, doesn’t impact a shoulder or some other workpiece feature, scrapping the part.
 
Taiwan’s Nine9 (exclusively represented in the United States by Everede Tool Company) has developed an alternate type of center drill geared toward high-production environments that eliminates the need to measure replacement drills. Its “i-center” is said to be the industry’s first indexable-insert center drill, combining the performance advantages of solid carbide with the positioning repeatability and quick-change benefits common to indexable-insert tooling. This new type of drill is suited for components such as transmission components, crankshafts and shafts for motion-control applications turned or ground in large volumes.
 
The i-center tool uses standard insert blanks that offer two drilling cutting edges. Inserts locate on two pins machined into the mating toolholder and are secured via a single Torx screw. Insert edge-to-edge positioning accuracy is 0.05 mm in the axial direction and 0.02 mm in the radial direction, making it unnecessary to re-measure after indexing or changing inserts. The i-center toolholders are made of hardened, high-alloy steel and have internal passages that deliver high-pressure coolant to the tip of the insert. This helps increase cutting speed and extend tool life while preventing chip “bird-nesting.”
 
Each insert drill tip has two cutting edges as well as reliefs designed to facilitate chip evacuation. This provides a quality hole finish and also helps prevent insert tips from breaking due to excessive heat buildup, which is the most common failure mode for center drills. The i-center inserts have a two-flute-effective design and are offered in diameters ranging from 2 to 10 mm. Standard forms include ANSI 60-degree, DIN332 Form R and DIN332 Form A+B, but special forms are also available. They have a K20F carbide substrate engineered for centering operations and a TiAlN coating, making them suitable for drilling cast iron, carbon/alloy steels, aluminum/aluminum alloys and copper/copper alloys.
Horn USA
CERATIZIT OptiLine Solid Carbide End Mills
Iscar
IMCO
T.J. Davies
Sumitomo
Ingersoll Cutting Tools
Kyocera MA90
IMTS 2024
VERISURF
Gravotech
High Accuracy Linear Encoders

Related Content

Holemaking

Kennametal Expands Modular Drilling Platform

The KenTip FS GTP insert allows for multiple machining applications across materials including steel, stainless steel and cast iron.

Read More
Holemaking

New Machining Technology Works With Old to Restore WWII Submarine

A set of donated boring bars that can be used in a 1954 boring head will enable volunteer machinists to recreate a pair of binoculars for the USS Pampanito.

Read More

How to Turn Machine Shop Downtime Into Process Expertise

To take advantage of a lull in business, JR Machine devised a week-long cutting tool event that elevated the shop’s capabilities with aerospace alloys.

Read More

10 Ways Additive Manufacturing and Machining Go Together and Affect One Another

Forget “additive versus subtractive.” Machining and metal additive manufacturing are interconnected, and enhance the possibilities for one another. Here is a look at just some of the ways additive and machining interrelate right now.

Read More

Read Next

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Horn USA