Aitrtech
Published

The Challenges of Teaching Creativity in Additive Manufacturing

The extensive design freedoms offered in additive manufacturing can be paralyzing. With AM consistently pushing the boundaries of manufacturing, how do we teach people to take risks and be creative with AM?

Share

competitive versus non-competitive AM design challenges among students

Competitive design challenges provide external motivation for students to be more creative with AM compared to non-competitive, open-ended challenges.

The design freedom of additive manufacturing (AM) is both a blessing and a curse. While many people are excited by the newfound freedoms that layer-by-layer manufacturing enables, an equally large number of people end up paralyzed by all of the freedom AM affords and don’t know where to start.

I have seen this in my students as well as in industry, and some dichotomies have emerged. For instance, many engineering students struggle with the freedom because the majority of their coursework focuses on problem solving, design specifications, meeting requirements and avoiding failures. Meanwhile, artists and architects are taught to embrace ambiguity and uncertainty and challenge the assumptions and constraints for any problem they face. They search for opportunity while engineers satisfy constraints. Granted, this is an over-simplification to illustrate a point, but you can see how it predisposes students — and future employees — to how they will learn now and in the future.

The same thing seems to happen in industry, although it manifests in a slightly different way. For example, people with more than 20 years of experience designing parts for machining (or forging or casting) have intimate knowledge of the constraints associated with that process and have a tough time letting go of that knowledge to embrace the design freedoms of AM. I have seen people’s minds blown during AM workshops when they realize how many of their assumptions or biases are so intimately connected with their manufacturing experience. As I’ve said before, just ask someone, “Why is a hole circular?” and see how they respond.

But now that a hole can be any shape, what shape should it be? Therein lies the problem: We are used to designing to so many constraints that once those constraints are removed or relaxed, we often don’t know where to start. Luckily, that is where a lot of engineering design education research is focused today, namely, how do we teach people to be creative with AM?

Thanks to funding from the National Science Foundation, my colleagues Dr. Nick Meisel (project lead) and Dr. Scarlett Miller and I have been working with Ph.D. student Rohan Prabhu to run experiments in our classes and labs to evaluate different ways of teaching design for AM (DFAM). Our studies thus far have focused primarily on the ordering and sequencing of DFAM knowledge and the nature and content of the ensuing design challenge. We divide DFAM into restrictive and opportunistic. Restrictive design strategies are used to mitigate the limitations of an AM process such as thin walls, overhangs, warping/distortion and anisotropy. Opportunistic design strategies are used to innovate with AM. These include part consolidation, lattice structures, topology optimization and mass customization. The design challenges range from open-ended (like designing a solution for hands-free viewing of a smartphone) to highly constrained (for example, tolerances for mating interfaces, build time or material restrictions). Some challenges are competitive in nature, while others are not.  

The work is still in progress, but with more than 740 students participating thus far, some interesting results are starting to emerge. and they parallel what I’m seeing in the industry workshops that I have been running for the past five years.

First and foremost, it is a lot easier for students to learn, use and recall the restrictive aspects (constraints) of DFAM versus the opportunistic ones. This shouldn’t come as a surprise given how accustomed we have become to dealing with constraints. The first thing most practicing engineers almost always want to know are the design guidelines for a given process. By knowing these, they can make sure their part doesn’t fail.  This is the same mentality that exists for any other manufacturing process, and it is one of the toughest to break when it comes to AM.

Second, we are not seeing huge gains in creativity once the opportunistic aspects of DFAM are introduced. We have looked at the ordering of restrictive versus opportunistic, which gets introduced first versus second, in an open-ended challenge, and we are not seeing significant differences in our metrics for usefulness, uniqueness and overall creativity. Technical goodness (the feasibility of a successful print) does improve, but that is mostly attributed to learning the restrictive aspects of DFAM.

Is AM being driven within the company by a passionate few in the form of a technology push, or is it being used to solve challenging problems in creative ways while delivering new value and providing market pull? 

What seems to be a larger driving factor for using the opportunistic aspects of DFAM is the nature of the design challenge itself. In an open-ended challenge, the motivation is intrinsic to leverage the design freedoms of AM whereas in a more constrained problem, or better yet a competition, the motivation is external to be creative to reduce weight, build time or realize a clever solution to a complex problem. Again, this parallels what I’m seeing in industry: Is AM being driven within the company by a passionate few in the form of a technology push, or is it being used to solve challenging problems in creative ways while delivering new value and providing market pull? The former leads to a burst of excitement that will fade away if it is not connected to the latter, and the latter will be difficult to achieve if the mentality focuses solely on design guidelines.

Underlying all of this is the culture of failure within the classroom or the company. If the design challenge is tied to a grade, then students will take fewer risks and be less creative when it comes to AM. The same thing happens in industry as well. The willingness to be creative with AM on an existing project on which you will be evaluated is directly linked to the company’s culture of failure. The attitude toward failure in an aerospace or medical company, for instance, is very different from a consumer products or industrial design firm, and while no one likes failure, those willing to embrace and learn from failures are also the ones pushing the boundaries and learning how to be the most creative with AM.

Airtech
UPM Additive Solutions
Acquire
The World According To
Paperless Parts
World Machine Tool Survey
KraussMaffei
DN Solutions
SolidCAM
More blasting. Less part handling.
JTEKT
Innovative Manufacturing for the Medical Industry
Techspex
MMS Made in the USA
QualiChem Metalworking Fluids
Koma Precision

Related Content

Basics

4 Rules for Running a Successful Machine Shop

Take time to optimize your shop’s structure to effectively meet demand while causing the least amount of stress in the shop.

Read More
Basics

4 Tips for Staying Profitable in the Face of Change

After more than 40 years in business, this shop has learned how to adapt to stay profitable.

Read More
Medical

4 Ways 3D Printing Is Changing Medical Implants

Additive manufacturing provides new ways of making medical implants, but its impact is greater than this. How 3D printing is changing medical manufacturing and improving patient outcomes. 

Read More
Measurement

How to Choose the Correct Measuring Tool for Any Application

There are many options to choose from when deciding on a dimensional measurement tool. Consider these application-based factors when selecting a measurement solution.

Read More

Read Next

Basics

Video: Inside the Penn State Additive Manufacturing Master's Program, Part 4

Kevin White, mechanical engineer at the Naval Nuclear Lab and student at Penn State, shares how a higher education in AM provides benefits beyond technical training.

Read More
Basics

Inside the Penn State Additive Manufacturing Master’s Program, Part 1

PSU's engineering master's degree in additive manufacturing and design offers students and manufacturing professionals a higher education in a continuously maturing field.

Read More
Sponsored

The Future of High Feed Milling in Modern Manufacturing

Achieve higher metal removal rates and enhanced predictability with ISCAR’s advanced high-feed milling tools — optimized for today’s competitive global market.

Read More
3D printing machine trainings