SGS H-Carb
Published

Surpassing The Speed Limit In CGI

Advancing rotary-insert machining may have implications for other difficult materials as well.

Share

Early machining tests in compacted graphite iron (CGI) suggested that the tool technology available today would not permit a particularly high cutting speed. Much faster cutting is possible in gray iron because of the presence of sulfur. The sulfur in the metal contributes to a layer of MnS (manganese sulfide) that lubricates the tool during machining. But in CGI, there is no sulfur and therefore no capacity for MnS. Without this lubrication, the cutter in CGI today can’t hope to cut much faster than 500 sfm.

Or so it was thought. Faster cutting is indeed possible, it turns out, if the cutting action of the tool is changed.

In the last couple of years, researchers at Cincinnati Lamb (Chesterfield, Michigan) have seen dramatic improvements in milling efficiency by machining CGI with rotary-insert tooling. In a rotary-insert tool, each cutting insert rides on a bearing that leaves the insert free to spin. Using this tool design, the company has achieved speeds surpassing 3,000 sfm in CGI, using the same ceramic insert material limited to slower speeds in more conventional bodies. The proportionate improvement in tool life is just as large.

Cincinnati Lamb engineering manager George Georgiou points out that the way this tooling works departs from the way metal has been machined since the 1800s. For a standard milling tool, machining consists of overpowering the workpiece material to shear away a chip, with energy losses converted into heat. The rotary-insert tool adds the rotation of the insert to this process, so that some of the energy is spent on driving the rotation instead. Reducing the amount of heat in the cut serves to protect the tool and improve its performance.

The tool design itself is not a new technology. Rotary-insert tooling has long been available, finding a use in certain cases to extend tool life in the machining of gray iron. For the most part, however, this tool design has been a solution in search of a problem. The cost of a tool body equipped with precision bearings generally can’t justify the amount of process improvement the tool can deliver. The degree of improvement seen in CGI is an exception.

More Power

The attention that Cincinnati Lamb and other metalworking suppliers are giving to CGI directly relates to an expected increase in diesel engine production, says Mr. Georgiou. Various automakers have plans to re-introduce diesel engines to the U.S. passenger car market because of the fuel economy this engine design can deliver. CGI makes the fuel economy even better still. Compared to gray iron, an engine made from CGI can deliver the same amount of power in a smaller package.

The material’s strength makes this possible, but that same characteristic makes the material difficult to machine. Because of the high forces required, Cincinnati Lamb’s successes with cutting CGI have relied not just on the rotary-insert tooling, but also on high-power, high-rigidity machine tools.

The company’s objective today is to improve the design of the rotary-insert tooling. This is seen as the principal technical challenge to achieving a more practical CGI milling process. The bearing cartridge introduces a brand new wear component to the tool, and engineers testing new designs for this cartridge aim to achieve longer and more consistent life. At the same time, engineers are working to decrease the tool’s minimum size. Current rotary-insert tooling permits machining of bores down to 3 inches in diameter. Cincinnati Lamb hopes to reduce that limit at least to 2 inches.

One hope for all of this improvement to the rotary-insert tool is that it will lead to payoff not just in the automotive industry, but in farther removed applications as well. Says Mr. Georgiou, “There is no theoretical reason why this same concept could not be applied to titanium, Inconel, Waspalloy, metal matrix composite and just about any other material that has historically been difficult to machine.”

Kyocera MA90
Sumitomo
Iscar
CERATIZIT OptiLine Solid Carbide End Mills
IMCO
Horn USA
Ingersoll Cutting Tools
T.J. Davies
World Machine Tool Survey
The Automated Shop Conference
Gardner Business Intelligence
SolidCAM

Related Content

Cutting Tools

Threading On A Lathe

The right choices in tooling and technique can optimize the thread turning process.

Read More
Holemaking

Form Tapping Improves Tool Life, Costs

Moving from cut tapping to form tapping for a notable application cut tooling costs at Siemens Energy and increased tool life a hundredfold.

Read More
Basics

A New Milling 101: Milling Forces and Formulas

The forces involved in the milling process can be quantified, thus allowing mathematical tools to predict and control these forces. Formulas for calculating these forces accurately make it possible to optimize the quality of milling operations.

Read More

10 Ways Additive Manufacturing and Machining Go Together and Affect One Another

Forget “additive versus subtractive.” Machining and metal additive manufacturing are interconnected, and enhance the possibilities for one another. Here is a look at just some of the ways additive and machining interrelate right now.

Read More

Read Next

Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Ingersoll Cutting Tools