VERISURF
Published

Sizing up the Digital Optical Comparator

A digital optical comparator uses a CAD file instead of a template or overlay film. More importantly, the digital comparator not only measures dimensions, but it also actively compares the measurements with nominal values, thus making it truly a gage for accepting or rejecting a part.

Share

By magnifying the image of a workpiece and projecting that image against a template that magnifies a profile of the part’s design, the traditional optical comparator magnifies the ability of the human eye to detect critical deviations. Mismatches between the projected workpiece image and the template make these deviations more obvious, enabling the user to judge whether the workpiece is acceptable.

The digital optical comparator has essentially the same function, but the comparison is done electronically, thus taking this inspection process to a higher level of precision, automation and convenience. The Visionx VisionGauge digital optical comparator (distributed in North America by Methods Machine Tools, Sudbury, Massachusetts) provides an example of how digital operation contributes to this “magnification” in capability.
 
Perhaps the greatest advantage of digital comparison is the ability to work directly with the CAD data so that no template or overlay is needed. This eliminates the need for VisionGauge users to prepare, handle and store templates, which are usually line drawings inked on Mylar film, based on the designer’s original blueprint. Using CAD data also precludes discrepancies between the blueprint and its enlargement on the template.
 
The value of the comparison conducted by the digital comparator, however, goes beyond this convenience. For example, the VisionGauge can compute and display the part’s deviation from nominal dimensions captured in the CAD file. This happens automatically and without the operator’s judgment or interpretation. The results of this comparison can be collected; saved in a database as a record of the inspection and measurement operations; and forwarded to third-party software applications. The system has the ability to capture electronic documentation (including high-resolution graphics) directly from the shop floor. According to Visionx, this process happens seamlessly during inspection.
 
The system can determine pass/fail status automatically and immediately send messages across a network for responses such as corrective action at the machine tool. Depending on magnification, digital comparison can detect deviations as small as 0.0001 inch.
 
Digital operation also enables the system to perform functions beyond the capabilities of the traditional comparator. For example, the system aligns the CAD data to the image of the workpiece without user prompting. This is a faster, more accurate process than manually shifting a physical template. In addition, a laser module available for the VisionGauge provides 3D inspection capability by enabling it to measure depth and height (Z-axis measurements). The traditional comparator is limited to 2D comparisons.
 
Likewise, the “hardware” of a digital optical gaging system differs from the traditional comparator. The “projection screen” of the VisionGauge, for example, is an array of flat-screen computer monitors. The system can be configured horizontally (the lens views the upright part from the side) or vertically (the lens looks down from above on the part lying flat). The Illumination can be positioned in front of or behind the part (above or below the part on a vertical unit). A wheeled base enables the user to move the system about for shopfloor use.
 
Finally, it should be noted that the comparison function of the system sets it apart from other non-contact or vision-based measurement systems. The digital comparator not only measures dimensions, but it also actively compares the measurements with nominal values, thus making it truly a gage for accepting or rejecting a part.
 
VERISURF
Paperless Parts
More blasting. Less part handling.
Koma Precision
KraussMaffei
DN Solutions
Innovative Manufacturing for the Medical Industry
High Accuracy Linear Encoders
JTEKT
PMTS 2025 Register Now!
MMS Made in the USA
715 Series - 5-axis complete machining

Related Content

Ballbar Testing Benefits Low-Volume Manufacturing

Thanks to ballbar testing with a Renishaw QC20-W, the Autodesk Technology Centers now have more confidence in their machine tools.

Read More
Measurement

Rethink Quality Control to Increase Productivity, Decrease Scrap

Verifying parts is essential to documenting quality, and there are a few best practices that can make the quality control process more efficient.

Read More
Cutting Tools

Orthopedic Event Discusses Manufacturing Strategies

At the seminar, representatives from multiple companies discussed strategies for making orthopedic devices accurately and efficiently.

Read More

Process Control — Leveraging Machine Shop Connectivity in Real Time

Renishaw Central, the company’s new end-to-end process control software, offers a new methodology for producing families of parts through actionable data.

Read More

Read Next

Sponsored

The Future of High Feed Milling in Modern Manufacturing

Achieve higher metal removal rates and enhanced predictability with ISCAR’s advanced high-feed milling tools — optimized for today’s competitive global market.

Read More
Automation

IMTS 2024: Trends & Takeaways From the Modern Machine Shop Editorial Team

The Modern Machine Shop editorial team highlights their takeaways from IMTS 2024 in a video recap.

Read More
Sponsored

Increasing Productivity with Digitalization and AI

Job shops are implementing automation and digitalization into workflows to eliminate set up time and increase repeatability in production.

Read More
VERISURF