HCL CAMWorks
Published

Making A Flexible Machine Tool More Flexible

Multitasking cutting tools can maximize the flexibility of multitasking machines.

Share

Anyone with the resources and the inclination can buy a machine tool. But not everyone can wring out the same amount of production from the same machine. Multitasking machines loaded with multiple turrets and/or spindles offer a great deal of production potential, as they can often completely machine a part on its own. Granted, these machines are more costly than their straightforward lathe and milling machine brethren. However, it's clear that shops battling just-in-time delivery schedules and shrinking batch sizes recognize the money-making potential of such machines, as their sales increase every year. It's the classic case of biting the bullet and choosing equipment that initially is more expensive, but offers greater payback down the road.

But the multitasking machine can't do it alone. The choices made in combining various machining elements and strategies into an efficient process ultimately separate the great shops from the average Joes. CAM programming continues to be a challenge for multitasking machines, which isn't surprising considering it involves simultaneous machining operations and orchestrated movement of a number of machine components.

Tooling can also play a make-or-break role. It's logical to think that a multitasking machine designed with flexibility in mind would use tooling that was also flexible. Such tooling would provide the capability to perform a variety of different machining operations with just one tool. A universal spindle interface that can accommodate both turning and milling operations can also augment process versatility. There are a few reasons for this.

First, space can be saved—turret space, to be more specific. The multiple turrets and spindles located within a multitasking machine not only limit space within the machining zone, but also place limits on tool magazine capacity. A single tool that offers five different cutting operations, for example, could free up four tool pockets. Those extra pockets could then be used to hold different tools for parts that require many machining operations or sister tooling to allow extended, unattended operation.

Second, cycle times can be quicker through the elimination of non-value-adding tool change time. A multitasking tool might just require spindle indexing to bring a different turning insert into position, for example.

Third, a universal, modular spindle interface that is effective for milling, turning and drilling operations allows for one common tooling platform for the shop's entire operation. This concept of standardization falls in line with the strategies of lean manufacturing.

During a recent visit to its international headquarters in Sandviken, Sweden, Sandvik Coromant (Fair Lawn, New Jersey) demonstrated the value that a multitasking tool platform, such as its Coroplex line, can provide for multitasking machines. The visit included a tour through the production facility for its mining and construction division, which heeds the advice of its sister tooling company by using robot-tended cells that combine multitasking machines with multitasking tools to produce various mining drill bit components (see sidebar on page 77).

Tooling Versatility

There are a few different approaches in terms of multitasking tool design. One is the combination of turning and milling inserts on a single tool body. That one tool could perform shoulder milling, turn-milling or circular interpolation, for example, as well as face and longitudinal turning, profiling or internal turning. To combine turning and milling capability on one tool requires a design in which the turning inserts don't contact the workpiece while the tool is milling. To avoid this, the milling inserts are located just ahead of the turning inserts axially and radially so that the turning inserts are not in cut when the tool is milling.

Another technique combines two turning inserts located on opposite sides of a tool body. The tool can perform a rough turning operation, then be indexed 180 degrees in the spindle to allow finish turning.

Yet another concept uses a modular mini-turret unit that can combine four different cutting modules to allow four turning operations on one tool. This would enable a single tool to rough turn, finish turn, cut a groove and turn a thread, for example. The combination of cutting modules is user-selectable, and it would depend on the type of part and the required machining operations.

Maintaining tool center line accuracy is especially important for multitasking machines to make sure that the tool is precisely positioned to perform a turning operation. This is where it is helpful to have a modular, universal spindle/tool interface. Such an interface is effective for multitasking machines, as their spindle(s) could be called on to mill or lock into position for a turning operation.

Programming And Tooling

One of the issues that tooling companies sometimes face when introducing new tool designs is the lag in terms of CAM software support of new tools. Often, though, programming is not made more difficult because of the new tool. To change from a milling operation to a turning operation for tools that can perform both just requires the spindle to precisely index to bring the turning insert is in proper position. There's no programming difference if that tool is used for milling, as the tool essentially is a milling cutter that happens to have turning inserts on board.

ProShop
HCL CAMWorks
Paperless Parts
More blasting. Less part handling.
MMS Made in the USA
Innovative Manufacturing for the Medical Industry
TIMTOS
715 Series - 5-axis complete machining
Hurco
World Machine Tool Survey
PMTS 2025 Register Now!
QualiChem Metalworking Fluids
VERISURF
KraussMaffei
JTEKT
IMTS+

Related Content

Automation

Automating Part Programming Cuts the Time to Engaging Work

CAM Assist cuts repetition from part programming — early users say it could be a useful tool for training new programmers.

Read More

Orthopedic Event Discusses Manufacturing Strategies

At the seminar, representatives from multiple companies discussed strategies for making orthopedic devices accurately and efficiently.

Read More
Sponsored

Continuous Improvement and New Functionality Are the Name of the Game

Mastercam 2025 incorporates big advancements and small — all based on customer feedback and the company’s commitment to keeping its signature product best in class.

Read More
Sponsored

Improve Machining Efficiency Through Digital Twin Simulation

Full simulation of a machining cycle using digital twins can not only identify crashes before they happen, but provide insights that enable the user to reduce cycle times.

Read More

Read Next

Workforce Development

Inside Machineosaurus: Unique Job Shop with Dinosaur-Named CNC Machines, Four-Day Workweek & High-Precision Machining

Take a tour of Machineosaurus, a Massachusetts machine shop where every CNC machine is named after a dinosaur! 

Read More
Automation

IMTS 2024: Trends & Takeaways From the Modern Machine Shop Editorial Team

The Modern Machine Shop editorial team highlights their takeaways from IMTS 2024 in a video recap.

Read More
Sponsored

Increasing Productivity with Digitalization and AI

Job shops are implementing automation and digitalization into workflows to eliminate set up time and increase repeatability in production.

Read More
HCL CAMWorks