Polymer Perspective
Published

Gosiger Adds 3D Printing Equipment, Services via Stratasys

The technology provider and integrator is helping to bring 3D printing to the shop floor via a new product line and partnership.

Share

Machine tool distributor and systems integration expert Gosiger recently announced a new agreement to supply and service Stratasys 3D printers. The move is a natural adv­­­ance for the company, whose customers are increasingly showing interest in additive manufacturing. However, the move is also strategic on the part of the 3D-printing equipment builder. Stratasys sees the future of its equipment not primarily among home or hobbyist users (though that might be a part of it) but instead in manufacturing facilities. The goal—for both Gosiger and Stratasys—is to help advance AM into applications out on the shop floor, and even into production.

As Josh Claman, chief business officer for Stratasys, put it: “The history of 3D printing is design and prototyping. The future is that, plus manufacturing.”

Claman addressed an audience at 3D4U, an event hosted at Gosiger’s Dayton, Ohio, headquarters shortly after the initial announcement was made. The June 14 open house and keynote presentation was a chance for Gosiger customers to learn about Stratasys technology as well as an opportunity for Stratasys to articulate its vision for additive manufacturing as a valuable tool for shopfloor applications as well as design and prototyping functions. Partnering with Gosiger provides necessary relationships and manufacturing expertise to help achieve that vision.

From Gosiger’s perspective, supplying 3D printing equipment is another way to serve its customers in addition to the machine tools, robotics, inspection equipment and complete turnkey systems it already provides. The company also sees great potential for using its own Stratasys machines to produce custom objects for its clients such as jigs and fixtures.

“As we expose our engineers to this technology, they are coming up with new ideas daily,” says John Haley, Gosiger CEO.

A number of sample components were on display during the 3D4U event, including some from Stratasys, but also many that were created by Gosiger employees following training on Stratasys 3D printers. These parts illustrate some of the services that Gosiger can provide with its new 3D printing capacity—and they may inspire customers to seek 3D printers of their own. A few examples of these applications are pictured below:

jigs and fixtures

Gosiger frequently supplies machined custom fixtures for workholding and inspection. A metal CMM fixture such as the one on the left (holding the 3D-printed model stator) might cost upwards of $600 and take a week at a machine shop. The 3D-printed fixture (on the right) cost only $82 and was produced within a day on a Stratasys 450mc. 

robotic end effectors

Robotic arms are another key component that Gosiger supplies, often as part of larger robot-tended cells. Custom grippers tailored to the customer’s application are commonly part of the package. Tools such as vacuum end effectors (like the one on the left) and jawed grippers (right) can be created and produced faster and more cost-effectively with a 3D printer than they can be machined. As an added benefit, they are also lighter than machined grippers. 

model parts

1.3D-printed models can help speed the setup of CMMs and other systems. This model of an injection-molded vacuum cleaner component as well as the fixture it is resting on were 3D printed so that a CMM could be programmed before the actual parts arrived, reducing the quality control setup time from about a month to just one day. 

I Am a MatchMaker
Formnext Chicago on April 8-10, 2025.
Polymer Perspective
Additive Manufacturing
Additive Manufacturing Conference
BIMU 2024
Universal Homepage Package W4900 Indicator
Gravotech
Gardner Business Intelligence
Koma Precision
SolidCAM
The Automated Shop Conference

Related Content

Five-Axis

An Additive Manufacturing Machine Shop

Finish machining additively manufactured implants requires different pacing and workflow than cutting parts from stock — different enough for an experienced manufacturer to warrant a dedicated machine shop.

Read More

Additive/Subtractive Hybrid CNC Machine Tools Continue to Make Gains (Includes Video)

The hybrid machine tool is an idea that continues to advance. Two important developments of recent years expand the possibilities for this platform.

Read More
Holemaking

10 Ways Additive Manufacturing and Machining Go Together and Affect One Another

Forget “additive versus subtractive.” Machining and metal additive manufacturing are interconnected, and enhance the possibilities for one another. Here is a look at just some of the ways additive and machining interrelate right now.

Read More

Digital Transparency in Machining Key to Multi-Site Additive Manufacturing

Cumberland Additive’s CNC programmer in Pennsylvania spends most of his time writing programs for machine tools in Texas.

Read More

Read Next

Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Airtech International Inc.