Cryogenic Machining of 787 Fuselage
Starting early next year, Boeing South Carolina will mill and drill composite fuselage sections for the 787 Dreamliner through cryogenic machining.
Share
At one of the newest Boeing manufacturing locations, a new machining technology will be used to process a new choice of material within a new aircraft. Starting early next year, Boeing South Carolina will mill and drill composite fuselage sections for the 787 Dreamliner through cryogenic machining.
The technology was developed by Mag. This company’s six-axis FTR AutoDrill (pictured) will perform the machining. Cryogenic machining involves delivering liquid nitrogen cooled to –321°F through the tool. The fluid absorbs heat from the machining process, resulting in extended tool life, reduced material adhesion, and the chance for increased cutting speed, not to mention chips that are both dry and cool. Because only a low flow rate of liquid nitrogen is needed, Mag’s formal name for the technology is “MQC,” or Minimum Quantity Cryogenic.
To hear about the latest in cryogenic machining, come to Chicago in September. The 3TRAM aerospace manufacturing conference at IMTS will include a presentation from Mag called “Cryogenic Super Cooling for Aerospace Machining.”
Related Content
-
Inside the Premium Machine Shop Making Fasteners
AMPG can’t help but take risks — its management doesn’t know how to run machines. But these risks have enabled it to become a runaway success in its market.
-
Ballbar Testing Benefits Low-Volume Manufacturing
Thanks to ballbar testing with a Renishaw QC20-W, the Autodesk Technology Centers now have more confidence in their machine tools.
-
Quick-Change Tool Heads Reduce Setup on Swiss-Type Turning Centers
This new quick-change tooling system enables shops to get more production from their Swiss turning centers through reduced tool setup time and matches the performance of a solid tool.