YCM Alliance
Published

Consider L:D When Choosing A Lathe For Small Parts

Should shops always defer to Swiss-type lathes to process small, long and often complex parts? Not necessarily. As a general rule, a Swiss-type is most appropriate for machining workpieces with L:D ratios of 4 to 1 or greater. Parts with lower L:D ratios may be machined economically on turn-mills.

Christina Bramlet, Editor

Share

When is a CNC Swiss-type lathe the most appropriate machine tool for the job? For years, these machines have been equated with high precision for efficiently machining small, complex parts. The reputation is well deserved. However, as these machines become more common, work is increasingly assigned to them erroneously. The distinction between work suited for Swiss and work suited for more straightforward turn-mill machines may not be readily apparent. In fact, Index Corporation believes the misapplication of Swiss-type technology is quite prevalent.

“Our studies have shown that between 70 to 80 percent of 1 1/4-inch work designated to Swiss machines could also be accomplished quickly and accurately on fixed-headstock machines,” says Olaf Tessarzyk, Index Corporation CEO.

Because a Swiss-type machine offers a means to quickly produce small, long and often complex parts in one handling, shops defer to this method for a broad range of small parts without fully exploring their options, he says. More important than the part’s diameter is often the part’s length-to-diameter ratio (L:D). As a general rule, a Swiss-type lathe is needed for pieces with L:D ratios of 4 to 1 or greater, he advises.

The trick to accurately cutting pieces within this L:D range is maintaining enough rigidity during the cutting process to minimize workpiece deflection. The Swiss-type machine pairs a sliding headstock with a guide bushing. The sliding headstock pushes the workpiece through the bushing during the cutting process. Z-axis motion comes from this; the tool doesn’t have to move. With the intended purpose of counteracting deflection, the guide bushing ensures that the cutting tool can remain as close to the collet as possible. By providing support across the entire length of the part in this way, the bushing helps deliver tight accuracies and fine surface finishes.

That said, parts with lower L:D ratios can be machined accurately without a guide bushing.

“In some instances, a shop can easily machine a short, 1-inch part without a guide bushing more economically than it would be able to with a Swiss-type,” Mr. Tessarzyk explains.

Many Swiss-type machine builders now offer an option of bushless sliding-headstock machines to accommodate lower L:D ratios. Another alternative is a fixed-headstock machine, such as a more general turn-mill. Index offers the C100 high-production turn-mill, for example. While still supplying the requisite rigidity to precisely machine small parts, this machine can address some limitations of a Swiss-type, one being its lower milling power. The turrets on a fixed-headstock design can supply more power for milling medical parts and various other jobs, Mr. Tessarzyk says.

According to Index, a machine such as this can also process certain parts more economically than can Swiss-types. Mr. Tessarzyk cites these potential areas for cost reductions:

Material Costs. To process parts in this diameter range on a Swiss-type, shops would typically need to purchase pre-ground material. The turn-mill can accept normal stock, potentially reducing material costs. In addition, the average user is actually consuming more material. There is more of a remnant because the spindle is behind the guide bushing and a certain amount of material is needed simply to reach this distance.

Maintenance Expenses. Each time that the guide bushing slides on the material, debris is created. Over time, the bushing can get dirty. Weekly maintenance is required to clean away the accumulation.

Setup Time. The vertical bed design (as opposed to slant) enhances accessibility to tools. The operator can reach the tools and change them out more quickly, thereby minimizing setup time. Meanwhile, the footprint is still as compact as a Swiss-type lathe.

YCM Alliance
DNS Financial Services America
Hurco
Universal Homepage Package W4900 Indicator
Gardner Business Intelligence
VERISURF
The Automated Shop Conference
OASIS Inspection Systems
DN Solutions
IMTS 2024
SolidCAM
BIMU 2024

Related Content

Turn/Mill

Inverting Turning and Five-Axis Milling at Famar

Automation is only the tip of the iceberg for Famar, which also provides multitasking options for its vertical lathes and horizontal five-axis machine tools.

Read More
IMTS

Weiler to Debut New Automation Features For Its Lathes

Weiler’s V 110 four-way precision lathe introduces features new to the U.S.

Read More
Basics

How to Start a Swiss Machining Department From Scratch

When Shamrock Precision needed to cut production time of its bread-and-butter parts in half, it turned to a new type of machine tool and a new CAM system. Here’s how the company succeeded, despite the newness of it all. 

Read More
Turn/Mill

When Organic Growth in Your Machine Shop Isn’t Enough

Princeton Tool wanted to expand its portfolio, increase its West Coast presence, and become a stronger overall supplier. To accomplish all three goals at once, acquiring another machine shop became its best option.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
YCM Alliance