Buying a Coordinate Measuring Machine: Technology Advances and Industry 4.0
CMMs are becoming more flexible with multi-sensor technology, which combines 3D non-contact laser scanners, five-axis scanning with a touch probe, optical systems and surface-finish measurement.
In the last couple posts in this series, we’ve considered coordinate measuring machines (CMMs) past and present as well as the various calibration standards and probe types that a shop should be aware of when in the market for one of these metrology systems. In this last post, let’s take a look at recent advances in CMM technology related to software and the Industrial Internet of Things (IIoT).
Multi-Sensor Technology and Software
Advances in sensor technology are leading to improvements in metrology, thus enhancing quality control and inspection methods and resulting in more precise manufacturing processes. CMMs are becoming more flexible with multi-sensor technology, which combines 3D non-contact laser scanners, five-axis scanning with a touch probe, optical systems and surface-finish measurement. Tool racks enable sensors to be changed automatically to continue measuring the same part.
Currently, customers often dedicate machines exclusively to touch-trigger or scanning measurement processes. While one CMM operator may specialize in touch-trigger scanning, another operator may specialize in laser scanning and yet another in optical or five-axis scanning. Different metrology techniques may require specific software to drive the data collection routine, while additional software may be required to analyze the data. Software may also be tailored for the application and the types of parts being measured, such as plastic, sheet metal, aerospace or automotive.
Software enabling the full capability of the sensor type is essential. It’s also important for sensors to be fully integrated with metrology software across multiple platforms. Programming a CMM should be intuitive and operator-friendly. For example, programming a scanning probe to sweep each blade of a rotor is a complex task, but this process can be dramatically simplified with automated software features. Similarly, data analysis and reporting for each sensor type should produce uniform and compatible results.
Both software and hardware for metrology equipment are being developed to interact, thanks to interoperability standards. Generic software compatible with single devices will give way to an integration of all devices. Simplicity and ease of use are key benefits of this trend.
Likewise, open-platform controllers are available to enable any front-end software package written with an I++ interface to talk to any control system that supports an I++ client. This provides complete flexibility to run virtually any software package on any CMM with almost any sensor. Operators and programmers are no longer required to learn a multitude of software programs to run various machines and sensors.
Industry 4.0
Quality control is often approached as a reactive function. In other words, if a part is found to be out of tolerance, the only option is to retrace prior steps to find the cause and fix it. However, this approach has been likened to driving a car forward using only the rear-view mirror by which to steer. Manufacturing must move from a reactive to a planned and then to a proactive approach. This is far more difficult than one would expect. The final step of achieving a predictive approach is even more difficult, but progress is underway. In the emerging world of Industry 4.0, metrology data from CMMs is likely to play a key role.
High-performance, high-output manufacturing relies on control and predictive action through the active use of measurement data. CMMs are ideal tools for providing data that flows through the business via factory information systems. This will enable ultimate control across the entire manufacturing process.
The demand for higher quality and greater consistency of parts can’t be met unless tools such as CMMs improve in capability, speed, accuracy and throughput. With the increasing versatility of CMMs and advances in sensor technology, along with more automation, CMMs will become an ever more essential part of the overall process. For example, CMMs are likely to be used to digitize objects so this data can become part of the digital thread that is unifying the supply chain.
This is part three of a three-part series about buying a CMM.
- Part one: CMMs Past and Future
- Part two: Sorting through Standards and Probes
Find more insights about acquiring a new machine tool by visiting the Techspex Knowledge Center, “Guide to Buying Machine Tools.”
Related Content
The Many Ways of Measuring Thickness
While it may seem to be a straightforward check, there are many approaches to measuring thickness that are determined by the requirements of the part.
Read MoreChoosing the Correct Gage Type for Groove Inspection
Grooves play a critical functional role for seal rings and retainer rings, so good gaging practices are a must.
Read MoreHow to Choose the Correct Measuring Tool for Any Application
There are many options to choose from when deciding on a dimensional measurement tool. Consider these application-based factors when selecting a measurement solution.
Read MoreHow to Evaluate Measurement Uncertainty
Manufacturing and measurement are closely coupled. An important consideration for the use of measurement results is the associated measurement uncertainty. This article describes common metrology terms and provides an example uncertainty analysis.
Read MoreRead Next
Registration Now Open for the Precision Machining Technology Show (PMTS) 2025
The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.
Read More5 Rules of Thumb for Buying CNC Machine Tools
Use these tips to carefully plan your machine tool purchases and to avoid regretting your decision later.
Read MoreRego-Fix’s Center for Machining Excellence Promotes Collaboration
The new space includes a showroom, office spaces and an auditorium that will enhance its work with its technical partners.
Read More