SmartCAM
Published

Broken-Up Programs Limit Broken Tools

Posting tool paths for different operations to the machine individually rather than as a single, combined part program helps this heavily lights-out operation quickly address the causes of tool wear and breakage.

Share

Breaking up programs by operation speeds the process of troubleshooting a worn or broken tool after an alarm is triggered by a Blum laser tool probe, an accessory common to all of the shop’s machining centers. 

Thanks to workzone-mounted cameras and other remote machine monitoring and control technology, personnel at Hard Milling Solutions (HMS) can respond immediately to any problems during the shop’s two lights-out shifts. However, determining the source of the problem when a machine’s laser tool probe triggers an alarm for wear or breakage can still take a great deal of time. In these instances, the shop relies on another strategy to get spindles spinning again as quickly as possible, one that’s exceedingly simple to execute. That is, to segment part programs by posting tool paths for different operations separately, rather than as a package.

Even during the single, staffed shift, the shop floor at HMS can be a lonely place. Programmers like Ryan Mihelcich, shown here, rely on video feeds and automatic alerts to keep them apprised of ongoing machining operations while they program future jobs. In fact, one such alert is tied into the shop’s doorbell, which rings whenever a machine stops. 

The essential idea is that determining why a one-hour program alarmed out is far easier than determining why a 10-hour program alarmed out, says Corey Greenwald, HMS founder and president. That’s because after an alarm, the program essentially “rewinds,” he explains. So, the process of discovering when a problem occurred (let alone why) requires retracing steps, sometimes all the way back to the first toolpath. Even if the 10-hour program calls for hourly checks for tool wear or breakage with an integrated laser probe, the only benefit of an alarm is ensuring that the machine shuts down and that the problem doesn’t get any worse. Posting the program in hourly segments instead, with a laser check after each, makes troubleshooting faster by isolating the portion of the machining routine where the error occurred.  

In some cases, a simple visual check of the part might be enough to determine which operations completed before the alarm. However, HMS’s mostly mold and die industry work, which often involves taking multiple, light passes across the same complex geometry, makes these visual checks less reliable than they might sound, Mr. Greenwald says. “If you’re squeezing down into a tight crevice, it can be hard to see with the human eye whether you've got a 6-ball (6-mm ballnose end mill) or a 3-ball in there,” he explains. He adds that segmented programs come in particularly handy when multiple operations use the same cutting tool, particularly when those operations don’t occur in sequence. “With one big program that’s errored out, all you’ll know is which tool is in the spindle.”

Although this concept is straightforward, it might not work for every shop. HMS has standardized largely on Makino, which supplied seven of the shop’s eight high-speed, hard-milling VMCs. That builder’s Professional 5 CNC offers two capabilities that facilitate HMS’s segmented programming approach. One is the capability to customize program names. This helps employees understand what’s happening during a particular portion of the machining routine, and Mr. Greenwald says it comes in particularly handy when multiple, non-sequential operations employ the same cutter (examples of typical names for HMS program segments include “10-mm rough” and “6-mm semi-finish”). Perhaps more importantly, the CNC enables running multiple programs in sequence, and that list can be displayed in the DNC list. “You could write a macro to list the operations with other controls, but when it errors out, it’ll just rewind to the beginning. With the Pro 5, it’s easy to have a list of every program that’s going to run, and they’ll run one after the other. If there’s an alarm, the program segment where it occurred will show up as incomplete.”

Segmented programming certainly comes in handy, but this is a shop that thrives largely on ensuring tools don’t break or wear prematurely in the first place. For an operation focused so heavily on unattended machining, process reliability and predictability are paramount. Although far more involved than segmented programming, HMS’s approach to ensuring that reliability and predictability is rooted in very simple concepts. Essentially, the shop makes the most of its CAM software tool library by painstakingly tracking machining parameters for every job, then standardizing on the most effective settings for particular combinations of cutting tools and materials. This March-issue feature article tells that story.   

Surface finishing in Fusion
ProShop
HCL CAMworks
SmartCAM
Techspex
The Automated Shop Conference
High Accuracy Linear Encoders
Universal Homepage Package W4900 Indicator
OASIS Inspection Systems
Hurco
Paperless Parts
BIMU 2024

Related Content

Die/Mold

For This Machine Shop, Licensing Is the Answer to the Inventor’s Dilemma

Machine shops are natural inventors, but not necessarily suited to supporting and marketing a product. This Minnesota shop with an invention related to micromolding will share it through licensing.

Read More
CAD/CAM

Hexagon Acquires TST Tooling Software Technology

Hexagon acquires TST Tooling Software Technology, a distributor of VISI, Hexagon’s CAD/CAM software for the mold and die sector, and PEPS CAM software.

Read More
Die/Mold

Tool and Die Shop Discovers New Opportunities With First CNC Machine

In a shop that stamps millions of parts per year, the arrival of a CNC machining center is opening new pathways for production and business. 

Read More
Die/Mold

How to Achieve Unmatched Accuracy in Very Large Workpieces

Dynamic Tool Corp. purchases two bridge-style double-column CNCs to increase the cutting envelope and maintain 5-micron cutting accuracy in the long term.

Read More

Read Next

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More
HCL CAMWorks