How Automating Gages Can Improve Inspection Processes, Increase Production
Doing so can help speed the measurement process, eliminate operator influence and generate better results.
A trained inspection technician will most likely get better results from a gage than your average machine operator. The operator is also likely to be slower to complete the process than the trained technician, and there is a good possibility that he will not be able to keep up with the rate at which the machine is producing parts.
Because of this, standard off-the-shelf gaging may not be the best choice for specific inspection processes at the machine or for best throughput by the operator. More and more high-production facilities are looking to reduce the amount of interaction the operator has with the part. Machine operators are there to make parts, not necessarily to handle, measure and move parts.
When most people think of automation with custom gages, they envision a large inline gaging system with parts moving along on a conveyor and being passed through the automatic gage, measured and sorted, per part requirements. And while this is a true example of an automated gaging process, there are a lot of “in-between” gages that, while not as extensive as fully automatic gages, do introduce some automation to the process. This is because what automation does is provide an operational improvement to an apparatus, process or system by adding mechanical or electronic devices that take the place of human labor.
Thus, anytime we use a custom gage that replaces, or even just lessens operator involvement, we have provided some form of automation. And every time we reduce or replace human involvement, we are apt to speed up the measuring process and reduce manufacturing costs.
Based on this premise that custom gaging is meant to speed the measuring process and reduce the human element, we can begin dividing custom gages into various levels of automation and look at how these can help improve the inspection process and increase production.
Automating manual gages. On a very basic level, if a manual gage is created with the specific goal of making it easier to stage or gage a part, then we have helped automate the process. Or, if the manual gage is designed to make multiple checks at once, the same goal is accomplished: the gage reduces or takes the place of human labor.
Semi-automatic gages. The next level of automation brings movement into the gaging operation. Parts often have to be moved or manipulated to make the required check: diameter variation runouts, concentricity or some other rotational function, for example. This required movement can be built into a custom gage, including rotating a part faster than the operator can or rotating it at a constant velocity without operator influence. There are a number of ways to do this. One is to effect the rotation so that both static and rotation checks can be made in one operation. For a custom-configured, standard-element system, this is the ultimate in automation: multiple checks, faster rotation and no operator influence.
Fully automated gages. Fully automating the measuring process is the ultimate custom gage solution. It takes the operator completely out of the picture and allows running lights-out in a very reliable manner.
There are two levels of custom-gage automation involving part movement within the gage: The gage can be designed for an automated process as a standalone station, or the gage can be part of the manufacturing process and take over for some portion of the part handling within the manufacturing cycle. Gages designed as standalone stations are often robot-fed, and may or may not include part manipulation/movement. Standalone stations have all the gaging components in place with the measuring system sending information back to a main controller. The gage will often use sensors to verify to the process controller when a part is in place, when to take a measurement and when to provide gaging results for disposal. These custom solutions are specifically tailored to the speed of the process, the part tolerances required, the environmental conditions of the process and the capabilities of the system bringing the part to the gaging station.
There are many ways that custom gages can help automate the measuring process, whether by simple modification to a standard gage or by building a custom CNC surface-measuring system. However, they all have the same goals: speed the process, eliminate the influence of the operator and generate better measuring results.
Related Content
4 Commonly Misapplied CNC Features
Misapplication of these important CNC features will result in wasted time, wasted or duplicated effort and/or wasted material.
Read More4 Ways 3D Printing Is Changing Medical Implants
Additive manufacturing provides new ways of making medical implants, but its impact is greater than this. How 3D printing is changing medical manufacturing and improving patient outcomes.
Read MoreSpeeding Up Splines
Moving small- to medium-batch production from outsourced, dedicated hobbing operations to in-house, CNC multitasking machines helps job shops achieve quick turnarounds and flexibility in supplying splines for the heavy-vehicle industry. Inserted disc cutters make this transition possible.
Read MoreWhat are Harmonics in Milling?
Milling-force harmonics always exist. Understanding the source of milling harmonics and their relationship to vibration can help improve parameter selection.
Read MoreRead Next
The Future of High Feed Milling in Modern Manufacturing
Achieve higher metal removal rates and enhanced predictability with ISCAR’s advanced high-feed milling tools — optimized for today’s competitive global market.
Read More5 Rules of Thumb for Buying CNC Machine Tools
Use these tips to carefully plan your machine tool purchases and to avoid regretting your decision later.
Read MoreRegistration Now Open for the Precision Machining Technology Show (PMTS) 2025
The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.
Read More