YCM Alliance
Published

Alcohol-Based Coolant Offers Environmentally Friendly Machining

This micro-volume coolant delivery system uses ethanol as the cooling medium for non-ferrous workpieces. The ethanol evaporates after it cools the cutting tool, so no residue is left behind on machined workpieces.

Share

Ethanol may soon play a bigger role not only in the way future vehicles are powered, but also how micro tools are cooled during high speed machining (HSM) operations. Datron Dynamics (Milford, New Hampshire) has developed a micro-volume coolant delivery system for its high speed VMCs that uses ethanol as the cooling medium. The ethanol evaporates after it cools the cutting tool, so no residue is left behind on the machined workpiece. This alternate coolant technique eliminates the recycling and disposal issues inherent to petroleum-based coolants, and it makes secondary workpiece degreasing unnecessary. Ethanol’s low viscosity allows it to reach the tool tip for effective cooling and lubrication at high spindle rpms, which may not be possible using emulsion-based coolants.

Ethanol is a naturally occurring form of alcohol with a low evaporation temperature. Though flammable, it is safe for use with workpiece materials that will not spark or develop an unusually high amount of heat during the machining process. Suitable materials include non-ferrous metals such as aluminum, copper, magnesium and brass, as well as a variety of plastics (excluding some polycarbonates whose crystalline matrix may be damaged by the ethanol). It is obviously not appropriate for machining ferrous materials, because the sparks generated as a carbide tool cuts such material could ignite the ethanol. In addition, ferrous materials should not be used for workpiece fixturing, in case a cutting tool inadvertently contacts the fixture as a result of a programming or operator error. The fumes that are generated as the ethanol evaporates are removed via a fan located within the machine enclosure. Optional fire suppression equipment is available.

An effective coolant delivery system is important to reduce cutting temperatures during HSM operations. It is also necessary to provide proper lubricity to allow a tool to move swiftly across the surface of a workpiece, notes Dr. Walter Schnecker, Datron Dynamics’ president. “Micro tools require a lubricating agent with a lower viscosity than water to ensure that the coolant reaches the cutting edge of the tool at the high spindle speeds,” Dr. Schnecker explains. “Ethanol is thinner than water and runs quickly to a tool’s cutting edge. Emulsion-based coolants, which typically have a higher viscosity than water, are therefore not as effective in lubricating micro tools during HSM operations.”

The coolant delivery system consists of an ethanol reservoir and two delivery nozzles. The ethanol is sprayed on the tool and the surrounding workpiece surface in a fine mist—micro tooling does not need a significant volume of coolant. The maximum output of the system is 25 mL/min., which translates to a consumption rate of 0.4 gallons of ethanol per hour. Dr. Schnecker estimates that most users typically consume approximately 1 gallon of ethanol per machine per day. “Recycling an oil-based coolant can cost as much as $12,000 per machine per year; recycling emulsion-based coolant can range from $2,000 to $4,000 per machine per year,” he notes. “The annual cost for the ethanol is less than those costs.”

Datron Dynamics also offers a micro volume, vegetable oil-based coolant system for machining ferrous materials. The machine’s controller allows users to switch between ethanol and vegetable oil for machines that will process both non-ferrous and ferrous workpieces.

YCM Alliance
High Accuracy Linear Encoders
Paperless Parts
Universal Homepage Package W4900 Indicator
Discover a variety of the best CNC machines
World Machine Tool Survey
SolidCAM
Gravotech
The Automated Shop Conference
OASIS Inspection Systems
Koma Precision
DN Solutions

Related Content

Automation

IMTS 2022 Review: Attention to Automation Extends Beyond the Robot and the Machine

The advance toward increasingly automated machining can be seen in the ways tooling, workholding, gaging and integration all support unattended production. This is the area of innovation I found most compelling at the recent International Manufacturing Technology Show.

Read More

Jorgensen's Coolant Collection System Eliminates Sludge Build-Up

The PermaClean system adds agitation to the coolant collection system or holding tank and prevents particulates from settling.

Read More
Sponsored

Henkel Redefines Industrial Machining and Grinding with Sustainable Metalworking Innovation

With innovative formulation and bio-resistant properties, Henkel’s new semi-synthetic lubricant emerges as a pioneering solution in the machining industry.

Read More

168 Manufacturing's Coolant System Automates Delivery

PMTS 2023: FullShop systems monitor and replenish all CNC machine sumps with optimized top-off ratios before the coolant runs low.

Read More

Read Next

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More
YCM Alliance