Why Additive Manufacturing Belongs on a Machine Tool
In more ways than one, the platform for subtractive manufacturing is also the enabler for additive.
Share
Hybrid Manufacturing Technologies makes an award-winning head that enables additive manufacturing capability to be added to a standard machine tool. Far from being competing capabilities, Hybrid cofounder Jason Jones, Ph.D., says “subtractive” CNC machining and additive manufacturing complement one another. Additive makes sense on machine tools, he says, for three reasons:
1. Setup reduction. A production metal part made through additive manufacturing is probably going to need machining before it is complete. Mating surfaces and threaded holes, for example, need to be machined. Therefore, why not perform the additive build on the machine tool, where this finish machining can be performed as part of the same cycle?
2. Energy expense. Additive manufacturing requires a heat source intense enough to melt metal. If you are going to invest in the power needed for this melting, then why limit the capability to the small build volume typical of a stand-alone additive machine? Bringing additive manufacturing to a big machine tool permits the use of that machine’s travels.
3. Less dramatic shift. Cultural inertia impedes the adoption of additive manufacturing. Longtime manufacturing professionals are familiar with CNC machine tools, but the additive machines are strange to them. Adding the additive capability to the machine tool provides an easier path to adoption.
Read more about the arrival of hybrid additive/subtractive machines.
Related Content
-
Rethink Quality Control to Increase Productivity, Decrease Scrap
Verifying parts is essential to documenting quality, and there are a few best practices that can make the quality control process more efficient.
-
6 Variations That Kill Productivity
The act of qualifying CNC programs is largely related to eliminating variations, which can be a daunting task when you consider how many things can change from one time a job is run to the next.
-
How to Determine the Currently Active Work Offset Number
Determining the currently active work offset number is practical when the program zero point is changing between workpieces in a production run.