Walter's Xtreme Evo DC160 Advance Provides High Productivity
Walter USA’s Xtreme Evo DC160 Advance solid carbide drill is designed for high productivity drilling in a wide range of materials.
Walter USA’s versatile Xtreme Evo DC160 Advance solid carbide drill is designed to deliver high productivity in a wide variety of materials and can be used in a broad range of applications, including in the mold and die, energy, automotive and general metalworking areas.
Apart from the 30×DC L/D ratio offering, the drill's design innovations include double margins and placement of second margins to improve centering capabilities and the tendency of the drills to stabilize early into the cut. This gives an advantage in performing difficult applications such as cross holes and inclined entry and exits. According to the company, a deep chip gash ensures reliable chip evacuation, resulting in improved hole quality and reliability, and a thinner web produces more accurate positioning, as well as reduced cutting forces and vibration.
Available in a variety of dimensions ranging to 30×DC and in diameters from 0.125"-0.75" (3-25 mm), the drill features grades WJ30ET (full coating) for universal usage up to eight times DC and WJ30EU (tip coating) for 12 to 30×DC. The drills have both a cylindrical (HA) and whistle notch (HE) shanks ground to an H6 tolerance. The point angle is 140 degrees. The drill is suited for a variety of ISO materials including steels, stainless steels, cast irons, nonferrous materials, superalloys, hard materials and nonmetal materials.
Related Content
-
The Impact of Cutting Teeth Spacing on Machining Stability
Many cutter designs are available, and variable teeth spacing (or variable pitch) cutters can be used to influence milling stability. Let’s discuss why teeth spacing affects stability.
-
How to Troubleshoot Issues With Tool Life
Diagnosing when a tool is failing is important because it sets an expectation and a benchmark for improvements. Finding out why gives us a clue for how to fix it.
-
Shoulder Milling Cuts Racing Part's Cycle Time By Over 50%
Pairing a shoulder mill with a five-axis machine has cut costs and cycle times for one of TTI Machine’s parts, enabling it to support a niche racing community.