SMW Autoblok Stationary and Automation Products
Published

Tune Chatter Out Of Tools

A basic tenet of metalcutting is shorter tools are more rigid than longer tools and generally deliver better cutting results. Closer proximity of a cutting edge to a machining center spindle or turning center turret translates into higher feeds and speeds with better surface finish and less chatter.

Share

A basic tenet of metalcutting is shorter tools are more rigid than longer tools and generally deliver better cutting results. Closer proximity of a cutting edge to a machining center spindle or turning center turret translates into higher feeds and speeds with better surface finish and less chatter. This proximity is expressed as the cutter length to diameter ratio.

For many of the metalcutting applications processed in shops, a reasonable cutter length to diameter ratio is easily achievable. And in cases where some chatter is induced, a change in speeds and feeds will generally eliminate it. But there are applications where it's necessary to "hang a cutter out there."

Examples include mold making and deep pocket milling for aerospace componenets where a cutter must be long enough to reach inside a cavity yet slender enough to allow the cutter to move about inside the pocket. In turning applications deep boring bars needed to bore through workpieces push the recommended length to diameter ratio envelope.

In these, and other applications like them, chatter becomes a process inhibitor. When an extended tool tip encounters a workpiece, the forces generated tend to make the cutter oscillate. It's like a tuning fork. Strike the end of the fork and it vibrates. The length and thickness of the tines determine vibration frequency.

However, touch the fork and it stops. If you hold the tuning fork by its tines and strike them, they won't vibrate. Chatter in an extended cutting tool is like the vibration of a tuning fork. A new device from Kennametal acts to, in effect, grab the forks so they won't vibrate. They are damped.

Called tuned tooling, the device consists of a sensor that is placed on a special toolholder, an instrumented hammer and an electronic analyzer. Tool tuning can be done on-line or off-line.

In operation, a sensor from the tuner unit is attached to the milling cutter or boring bar. Inside the tool shank is an adjustable internal damper. The damper is accessed by a setscrew. Before the tuning is done, the damper is compressed.

The operator taps the cutter end of the toolholder with an instrumented hammer, which is also attached to the tuner unit. The tool's dynamic response is monitored on the tuner unit and the operator is instructed to position the damper to counteract the vibration response. This sequence is repeated, as necessary, until the dynamic response is minimized. At that point the cutter is tuned. A setscrew locks the damper into position.

So, how does it cut? Test cuts at Kennametal have shown dramatic results. Increases in cutting speeds, feeds and depths of cut in steel and aluminum on turning and machining centers show the concept works.

For example, tuned and untuned boring bars were tested on a lathe. The tool was a 2-inch diameter bar with 12 inches of overhang, a 6-to-1 length-to-diameter ratio. Material was 1045 steel with a Brinnell of 200. Initial depth of cut with a standard boring bar was 0.015 inch at 400 sfm and 0.012 inch feed. As most machinists would recognize, a setup like this at those speeds, is going to vibrate. Chatter marks on the workpiece confirmed it. But when the same tool was tuned and then run at those speeds, no chatter was in evidence. Depth of cut was pushed up to 0.120 inch, still with no chatter.

Then the bar was increased to 20 inches of overhang, a 10-to-1 ratio. At 600 sfm and 0.015-inch depth-of-cut, no chatter, then 0.030-inch depth, still nothing. The test went to 0.090-inch depth-of-cut with no chatter and good surface finish.

On rotary tools the results were similar. To cut a workpiece of 6061 aluminum, an 18-inch long cutter was run at 2000 rpm with a cut depth of 0.145-inch, 1047 spm with a feed of 18 ipm. It chattered badly. The toolholder was then tuned and the same test cut run only the depth-of-cut was increased to 0.26 inch. A surface tester placed on the finished workpiece read 16 ra finish for this test piece.

Tuned tooling and the procedure used to tune the tools are not necessary on every application in a metalcutting shop. But for the jobs that require long tools, have chatter problems from interrupted cuts or variances in stock, or surface finish specs that are hard to hit, tuning the tool may allow the shop to solve the problem with an increase in productivity. It might be worth a look.

SMW Autoblok Stationary and Automation Products
DN Solutions
BIMU 2024
Discover a variety of the best CNC machines
SolidCAM
Gardner Business Intelligence
Formnext Chicago on April 8-10, 2025.
Hurco
The Automated Shop Conference
EZ Access - Have it all with Ez - Mazak
VERISURF
JTEKT

Related Content

Turning Machines

Buying a Lathe: The Basics

Lathes represent some of the oldest machining technology, but it’s still helpful to remember the basics when considering the purchase of a new turning machine. 

Read More
Sponsored

How to Mitigate Chatter to Boost Machining Rates

There are usually better solutions to chatter than just reducing the feed rate. Through vibration analysis, the chatter problem can be solved, enabling much higher metal removal rates, better quality and longer tool life.

Read More
Sponsored

Selecting a Thread Mill That Matches Your Needs

Threading tools with the flexibility to thread a broad variety of holes provide the agility many shops need to stay competitive. They may be the only solution for many difficult materials.

Read More
Sponsored

Quick-Change Tool Heads Reduce Setup on Swiss-Type Turning Centers

This new quick-change tooling system enables shops to get more production from their Swiss turning centers through reduced tool setup time and matches the performance of a solid tool.

Read More

Read Next

Encountering Surface Finishes in the Everyday World

Surface measurement is becoming increasingly important to ensure proper performance of a manufactured product. Advanced surface measurement tools are not only beneficial in the manufacturing industry but also have unconventional applications.

Read More
Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More
Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
SMW Autoblok Stationary and Automation Products