Mitsubishi Electric
Published

Desktop 3D Scanner Captures Part Shapes

This desktop laser scanning system allows 3D objects to be digitized so that the data can be used to create part geometry for tool path generation. The system's ease of use and low cost make reverse engineering available to machine shops that could not previously access this technology.

Share

Scan it. Cut it. That’s the approach many shops would like to take. A new desktop laser scanning system promises to make that a practical reality at low cost. The system allows 3D objects to be digitized so that surface data can be used to create part geometry for toolpath generation. The NextEngine Desktop 3D Scanner from NextEngine Inc. (Santa Monica, California) uses a set of laser “eyes,” digital camera technology and image sensors to capture scan data from multiple, triangulated views. The system’s special software assembles and manipulates the data to create a 3D model suitable for use in a CAM system.

Scanning systems for reverse engineering have been available for years. What sets this new system apart from existing systems is that it is priced and packaged like a consumer electronics product. The hardware consists of a scanning unit (about the size of a cereal box) and a turntable that automates part positioning for scanning. The user interface software, ScanStudio Core, operates the scanner and the turntable. It is priced at $2,495. Two software options, ScanStudio Pro and RapidWorks, provide further capabilities and are priced in the same range.

For the machine shop, desktop scanning is a benefit when the machining process starts with a part—a prototype, a pattern, a model or a free-form “organic” shape carved in the studio or found in nature. CNC machines are designed to produce parts as the end product. The physical object cut from metal is the output. But CNC machines also require input, the numerical part program that gives the proper commands. Digital laser scanning helps bridge the gap from “start part” to end part by providing the “art” (shape geometry) in the middle. According to developers, the desktop scanner makes 3D scanning technology available to virtually any machine shop.

The scanning unit uses arrays of low-power lasers that sweep across an object while 3-megapixel cameras capture scanned data. Multiple sweeps and multiple positionings of the object are usually required to gather a complete 3D scan. The various passes can be displayed and merged in the PC software. Objects with matte white surfaces are easiest to scan; objects with shiny black surfaces are more difficult. The latter may require a powder dusting to reduce reflectiveness.

Objects the size of a soda can or smaller can be scanned in the “macro mode,” while objects as large as a shoebox can be scanned in the “wide mode.” The roundtable can be used to index smaller objects automatically for multiple scans. Large objects may have to be repositioned by hand. Developers say that, theoretically, there is no limit to the size of the object because any number of scans can be stitched together. Parts fitting within the "wide mode" can be scanned and aligned with one click. Scans from larger parts are semi-automatically aligned with “virtual beads” that the software can use to locate and connect common points in the scanned data for merging. Regardless of the merging process, blending and trimming overlaps is automated, thus speeding what might otherwise be a tedious process.

Scan data can be used to create file formats in three categories—mesh, surface and solid—that correspond to the level of software acquired by the user. For example, the standard software that comes with the system is adequate for STL formats that can be exported to a CAM system for basic machining. Most shops will be interested in the surface or solid file capabilities because they provide geometry comparable to the models shops often use as input to CAM.

Mitsubishi Electric
DN Solutions
VERISURF
Hurco
BIMU 2024
DNS Financial Services America
High Accuracy Linear Encoders
OASIS Inspection Systems
SolidCAM
Techspex
Formnext Chicago on April 8-10, 2025.
Gravotech

Related Content

Sponsored

How to Mitigate Chatter to Boost Machining Rates

There are usually better solutions to chatter than just reducing the feed rate. Through vibration analysis, the chatter problem can be solved, enabling much higher metal removal rates, better quality and longer tool life.

Read More

6 Machine Shop Essentials to Stay Competitive

If you want to streamline production and be competitive in the industry, you will need far more than a standard three-axis CNC mill or two-axis CNC lathe and a few measuring tools.

Read More

Understanding G27, G28, G29 and G30

Take a closer look at these reference position commands.

Read More

Generating a Digital Twin in the CNC

New control technology captures critical data about a machining process and uses it to create a 3D graphical representation of the finished workpiece. This new type of digital twin helps relate machining results to machine performance, leading to better decisions on the shop floor.

Read More

Read Next

Basics

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

3 Mistakes That Cause CNC Programs to Fail

Despite enhancements to manufacturing technology, there are still issues today that can cause programs to fail. These failures can cause lost time, scrapped parts, damaged machines and even injured operators.

Read More
Micromachining

A History of Precision: The Invention and Evolution of Swiss-Style Machining

In the late 1800s, a new technology — Swiss-type machines — emerged to serve Switzerland’s growing watchmaking industry. Today, Swiss-machined parts are ubiquitous, and there’s a good reason for that: No other machining technology can produce tiny, complex components more efficiently or at higher quality.

Read More
Mitsubishi Electric