Iscar
Published

Handle With Care

Micro-size drills and end mills don’t have to be difficult to use.

Share

It may seem strange that a tool able to cut metal can be so fragile that just setting it down on the bench too firmly can break it. But this is true of the smallest commercial drills and end mills used to produce machined features in small parts such as medical components. These tools demand process considerations all their own in order to use them effectively, and gentle handling is a primary consideration.

Niagara Cutter (Amherst, New York) is among the cutting tool companies that offer a line of micro-size tools. When using a 0.005-inch-diameter end mill, says Niagara engineering manager Dennis Noland, "just touching the tool with your hand the wrong way can break it."

And yet, a disciplined machine shop can use these tools quite well. The gentle handling outside the cut simply has to continue on into the cut as well. Even light impacts have to be avoided—meaning, for example, that non-contact tool measurement should be used—and runout and vibration need to be tightly controlled.

"TIR [total indicator reading] becomes critical," Mr. Noland says. The spindle and toolholder have to center the tool within a narrow band of concentricity. While a TIR measurement of 0.0005 inch might seem fussy in other applications, even that much runout becomes large when the tool diameter itself is only around 0.020 inch. The maximum acceptable runout is likely to be no more than 0.0002 inch, and maybe as small as half that size.

Such an exacting concentricity requirement does call for a quality toolholder, but it does not necessarily call for a specialized toolholder. These small-diameter tools typically have 1/8-inch shanks, so standard toolholders can grip them. A collet toolholder can work, and shrink fit may be better still.

What's Fast Is Slow

The next consideration is speed. Even an otherwise reasonably fast spindle—say, 12,000 rpm—will confine a small-diameter tool to a painfully low cutting speed. For example, put a 0.020-inch tool in such a spindle and the top cutting speed is just 63 sfm.

Mike Tibbet is a senior development engineer for micro cutting tool maker Kyocera Tycom (Irvine, California). He says one way to get the small milling and drilling tools up to speed is by adopting an add-on high speed spindle for the sake of these tiny tools. Because torque demands are small, the spindle can be air-powered. Alternatively, a motorized add-on spindle can permit machining of harder metals. Mr. Tibbet typically recommends a spindle speed of 80,000 rpm.

Spindle runouts, along with the general rigidity and tightness of the machine tools, are among the characteristics shops should look at when they are considering micro tools on their equipment, he says. Another important consideration is the coolant filtration, and the level of coolant cleanliness the shop can typically maintain. Small particles in the coolant can deliver relatively large impacts to micro-size tools.

For committed users, Mr. Tibbet also recommends a camera with a zoom lens to monitor the process. Because the micro tools make no audible sound when they're cutting and can't be seen cutting with the unassisted eye, these tools are problematic to troubleshoot. If a mistake causes a tool to break, the shop might be doomed to continue making that same mistake again and again. But a camera with some magnification can allow the machining to be observed as if it involved a standard-size cutter. "The idea is, if you magnify it enough, then it's not ‘micro' anymore," Mr. Tibbet says.

Laying It On Thick

Not everything is so scalable. Niagara's Mr. Noland is careful to point out one performance-enhancing feature of modern cutting tools that generally can't be applied to tools at micro-scale: the coating.

"We generally don't supply coating on these tools unless it's specifically requested," he says.

The reason relates to geometry. The thickness of a layer of PVD coating may be negligible on a standard-size tool, but that thickness becomes significant when the tool is just 0.010 inch in diameter. The layer of coating rounds the cutting edge. Because the rounded edge is prone to rub, coating at this scale is likely to impede the tool's performance instead of helping it.

Deep Hole Drilling

The ability to machine deep holes with small-diameter tools is improving, says Kyocera Tycom's Mike Tibbet. In one application, the company developed a 0.020-inch-diameter drill to machine a hole 0.750 inch deep in titanium.

Heat is a challenge in such an application, he says. In micro machining in general, the phenomenon of the heat leaving the cut with the chip (an effect that most machining processes try to take advantage of) simply cannot be realized, because the chip is not large enough. The heat goes into the tool instead, and the process has to allow for this.

The solution in micro drilling is a time-tested drilling technique: the peck cycle. The drill is frequently removed from the hole and allowed to dwell for a second or so—just long enough to give the coolant time to cool it down.

Deep Slot Milling

Not all small-diameter tools are used on small parts. Some are used on small features of bigger parts, such as the deep slots in molds that might otherwise be produced through EDM.

Cutting tool maker OSG Tap & Die (Glendale Heights, Illinois) makes end mills specifically for this application. According to engineering manager David Kwon, reconciling rigidity and chip clearance is the principal design challenge of this type of tool. He says the particular micro-grain carbide used for the tool is part of what makes the compromise possible.

As the length-to-diameter ratio for a small-slot milling tool increases, the risk of deflection increases as well. For this reason, Mr. Kwon recommends using a sequence of tools for a deep slot. For example, tools of three different lengths might be used on a particularly deep slot. The shorter and stiffer tools can take more aggressive rough cuts. Then, only the deepest reaches of the slot need to be machined using the lighter parameters that are necessary to guard the longest tool against deflection.

Kyocera SGS
IMCO
Specialized Plastic Packaging for Cutting Tools
Iscar
Ingersoll Cutting Tools
Horn USA
CERATIZIT
Sumitomo
IMTS+
PMTS 2025 Register Now!
SolidCAM
More blasting. Less part handling.
JTEKT
High Accuracy Linear Encoders
TIMTOS
KraussMaffei

Related Content

Sponsored

Quick-Change Tool Heads Reduce Setup on Swiss-Type Turning Centers

This new quick-change tooling system enables shops to get more production from their Swiss turning centers through reduced tool setup time and matches the performance of a solid tool.

Read More
Sponsored

How to Accelerate Robotic Deburring & Automated Material Removal

Pairing automation with air-driven motors that push cutting tool speeds up to 65,000 RPM with no duty cycle can dramatically improve throughput and improve finishing.

Read More
Toolholders

How to Troubleshoot Issues With Tool Life

Diagnosing when a tool is failing is important because it sets an expectation and a benchmark for improvements. Finding out why gives us a clue for how to fix it.

Read More
Cutting Tools

High-Feed Machining Dominates Cutting Tool Event

At its New Product Rollout, Ingersoll showcased a number of options for high-feed machining, demonstrating the strategy’s growing footprint in the industry.

Read More

Read Next

Die/Mold

Molds In Miniature

A shop that makes tooling for metal injection molding (MIM) relies on a machining center designed specifically for micro-scale work.

Read More
Toolholders

Rego-Fix’s Center for Machining Excellence Promotes Collaboration

The new space includes a showroom, office spaces and an auditorium that will enhance its work with its technical partners.

Read More
Sponsored

The Future of High Feed Milling in Modern Manufacturing

Achieve higher metal removal rates and enhanced predictability with ISCAR’s advanced high-feed milling tools — optimized for today’s competitive global market.

Read More
CERATIZIT