Aitrtech
Published

Freedom in Electron Beam Additive Manufacturing

The wire-fed EBAM process offers flexibility in part geometry and size—as well as material properties.

Share

Leaders-In background

Sciaky’s EBAM system is equipped with two wire feeders that travel with the electron beam head, enabling the building of large parts.  

Electron Beam Additive Manufacturing (EBAM) holds plenty of possibilities for metal AM applications. The process builds parts using an electron beam to melt metal wire that travels with the beam head. In contrast to powder bed systems in which the size of the part is limited by the size of the bed, parts built on an EBAM system can be as large as the machine’s travels permit.

This capacity for building large parts plus its speed gives EBAM clear potential as an alternative to forging. Like forging, it is a near-net-shape process capable of building large forms. But unlike forging, it requires no die or other tooling, making it faster and more flexible. EBAM can provide design freedoms in geometry that forging cannot.

But perhaps more significantly, EBAM also provides material freedom. Chicago-based Sciaky has developed an EBAM system that allows for two different wires to be fed into the machine. This dual-fed system could be used to deposit two spools of wire simultaneously, increasing throughput, or loaded with both large-diameter and fine wire to provide a range of detail. However, its greatest potential may lie in the ability to blend wires of two different alloys within the same build, creating a proprietary alloy or even a gradient between materials. 

Read more about the possibilities of EBAM and how Lockheed Martin is building propellant tank components with this technology on Additive Manufacturing magazine’s website. 

Related Content

Airtech
World According To
SolidCAM Additive - Upgrade Your Manufacturing
Acquire
MWI
DANOBAT
MMS Made in the USA
VERISURF
Airtech International Inc.