Cutting Costs With Cutting Tools: Instead Of Life Or Price, Look To Capability
A shop that wants to win cost savings from its cutting tool purchases is likely to take two factors into account: tool life and tool price. But that approach might be flawed.
Share
A shop that wants to win cost savings from its cutting tool purchases is likely to take two factors into account: tool life and tool price. When evaluating competing cutters, the shop asks how much use it can get from each tool, and how much it will have to pay for each hour or minute of cutting. But is that the best way to find the tool that can deliver the greatest savings?
A study presented by cutting tool supplier Sandvik Coromant illustrates why that approach may be flawed. Manufacturers were surveyed to measure the factors that contribute to the cost of machined parts. The numbers suggest that when it comes to the potential for cost savings, both the price of the tool and the life of the tool tend not to matter much.
The numbers are listed on this page. They show average costs per part in percentage terms. The cost of the cutting tool accounts for just 3 percent of the total. What this small number means is that an improvement in life or price offers only a small potential for savings. The numbers also reveal what aspect of the tool offers more significant savings potential.
The table on the facing page shows these numbers in action. It applies them to three different approaches for cutting cost. The comparison assumes a job that currently costs $10 per part, meaning the 3 percent for cutting tools translates to 30 cents, the 17 percent for workpiece materials translates to $1.70 and so on.
Variable costs
Costs incurred only under production:
• Cutting tools (3%)
• Workpiece materials (17%)
Fixed Costs
Costs incurred at all times:
• Machinery (27%)
• Labor (31%)
• Buildings & administration (22%)
Scenario A is the “beat up on the tooling supplier” approach. The shop wins a 30 percent reduction in the price of tooling. However, even that great of a reduction translates only to 9 cents per part, a savings under 1 percent.
Scenario B focuses on the tool life. The shop runs comparison tests, and in that way it finds a tool that will deliver 50 percent longer life. But this savings too delivers little real impact. The dime per part it saves also represents just 1 percent of cost.
Now consider Scenario C, in which a change in tooling allows the cutting speed to be increased by 20 percent. While the tool able to realize this higher speed is significantly more expensive, the new tool earns its keep by affecting other, much greater sources of expense. With the speed comes reduced cycle time and therefore added capacity. If there is work to fill that capacity, then the shares of machine, labor and administrative costs that are carried by this job all decrease, delivering a total cost savings of 15 percent. (And that number doesn’t even include any benefit from the improved lead time.)
The comparison offered by the table above is not necessarily an argument in favor of a faster cutting speed. Instead, it’s an argument in favor of saving time. The same logic presented here also applies to a combination tool that allows multiple steps to be consolidated into one pass, or a tool designed to leave a smooth machined surface so that a finishing step can be eliminated. The tool may be more expensive, but it can deliver significant savings if it cuts time as well as metal.
Variable Costs
Today | SCENARIO A: 30% Discount | SCENARIO B: 50% Longer Tool Life | SCENARIO C: 20% Increase Cutting Speed | |
Cutting Tools | .30 | .21 | .20 | .45 |
Workpiece Materials | 1.70 | 1.70 | 1.70 | 1.70 |
Fixed Costs
Today | SCENARIO A: 30% Discount | SCENARIO B: 50% Longer Tool Life | SCENARIO C: 20% Increase Cutting Speed | |
Machinery | 2.70 | 2.70 | 2.70 | 2.16 |
Labor | 3.10 | 3.10 | 3.10 | 2.48 |
Buildings & Admin | 2.20 | 2.20 | 2.20 | 1.76 |
Cost Per Part | $10.00 | $9.91 | $9.90 | $8.55 |
Savings | 1% | 1% | 15% |
Related Content
Briquetting Manufacturer Tools Up for Faster Turnaround Times
To cut out laborious manual processes like hand-grinding, this briquette manufacturer revamped its machining and cutting tool arsenal for faster production.
Read MoreToolpath Improves Chip Management for Swiss-Type Lathes
This simple change to a Swiss-type turning machine’s toolpath can dramatically improve its ability to manage chips.
Read MoreSelecting a Thread Mill That Matches Your Needs
Threading tools with the flexibility to thread a broad variety of holes provide the agility many shops need to stay competitive. They may be the only solution for many difficult materials.
Read MoreShoulder Milling Cuts Racing Part's Cycle Time By Over 50%
Pairing a shoulder mill with a five-axis machine has cut costs and cycle times for one of TTI Machine’s parts, enabling it to support a niche racing community.
Read MoreRead Next
Registration Now Open for the Precision Machining Technology Show (PMTS) 2025
The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.
Read MoreBuilding Out a Foundation for Student Machinists
Autodesk and Haas have teamed up to produce an introductory course for students that covers the basics of CAD, CAM and CNC while providing them with a portfolio part.
Read MoreSetting Up the Building Blocks for a Digital Factory
Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.
Read More