Milltronics USA, Inc.
Published

Combining Skiving and Burnishing for Cylinder Bores

Machines engineered specifically to perform skiving and roller burnishing operations deliver precise roundness tolerances and quality surface finishes.

Share

Leaders-In background
Loading the player ...

 

For a hydraulic cylinder to operate effectively, the cylinder’s ID must be precisely round and have a mirror-like surface finish to ensure a tight seal between it and the mating internal piston. This is commonly achieved through skiving and subsequent roller burnishing inside a tubular workpiece. Skiving uses a set of carbide blades positioned around the diameter of a tool to slice away chips and create a geometrically round bore. Roller burnishing, a cold-working process, uses multiple rollers to compress the peaks of material left behind after skiving to generate an extremely smooth surface finish. Burnishing also introduces a residual stress layer into the cylinder wall, which improves cylinder fatigue life.
 
These operations are sometimes performed in one pass using a combination skiving/roller burnishing tool on a BTA-style deep-hole drilling machine. However, Unisig, a supplier of machines, tools and automation for deep hole-making applications, has recently designed machines engineered specifically to perform skiving and roller burnishing operations, noting increasing demand in the hydraulics market for such equipment. Its S-series machines use a single tool for both operations, achieving roundness tolerances of IT-8 or IT-9 and bore surface finishes as smooth as Ra 0.05 to 0.2 micron in one setup and one tool pass.
 
Sarang Garud, applications engineer for Unisig, says that 80 percent of the S-series machine design is based on the company’s existing B-series (ballscrew-feed) BTA drilling machines. That said, he notes three distinct features that enable the S-series to be highly effective at skiving and roller burnishing:
 
• Workholding—The tubes used for hydraulic cylinders are relatively thin. Care must be taken to secure the tube rigidly enough for the skiving and roller burnishing processes, but not so tightly as to deform it. Therefore, clamping cones are typically used to hold the tubes on both ends instead of three-jaw chucks. This clamping method also facilitates quick workpiece changeovers in automated environments. In addition, extra support must be provided along the length of the tube due to the inherently high length-to-diameter ratio of these workpieces. The S-series uses a V-shaped hydraulic clamp to provide this support.
 
• Power train—Thin cuts are taken during skiving. A skiving blade’s radial engagement with the workpiece might be just 3 mm and feeds might be 1 mm per revolution, per blade. However, each tool has two or three skiving blades, which multiples the effective feed rate. Similarly, the cold-working roller burnishing process requires a lot of torque and high spindle speed as it plasticizes and compresses the peaks that skiving leaves behind. As a result, the S-series features a more robust power train with higher horsepower motors and faster spindle speeds than conventional BTA drilling machines.
 
• Rotary union—A hydraulic circuit inside the skiving and roller burnishing tool expands the skiving blades and burnishing rollers during cutting operations. Therefore, the S-series has a rotary union at one end of the tool headstock to provide a hydraulic connection throughout the length of the rotating tool. Once the cutting pass is completed, the blades and rollers are retracted into the tool as it is removed from the tube. The tool continues to rotate as it is removed, but nylon guides on the tool and continuous coolant delivery prevent damage to the cylinder wall.
 
The S-series machines are available in skiving/burnishing diameters ranging from 2 to 12 inches and lengths to 20 feet (larger machines are available upon request). The machines can also be modified to perform BTA drilling, counter-boring, and other drilling and tube-finishing operations. In addition, tools can be configured to perform tube finishing on a variety of metals.

 

TCI
VERISURF
Campro USA
Milltronics INSPIRE Control
Okuma LB2000 EX III MYW
RazorStar
IMTS+
YCM Alliance

Related Content

Automation

CNC Machine Shop Honored for Automation, Machine Monitoring

From cobots to machine monitoring, this Top Shop honoree shows that machining technology is about more than the machine tool.

Read More
Sponsored

The Future of High Feed Milling in Modern Manufacturing

Achieve higher metal removal rates and enhanced predictability with ISCAR’s advanced high-feed milling tools — optimized for today’s competitive global market.

Read More
Sponsored

Quick-Change Tool Heads Reduce Setup on Swiss-Type Turning Centers

This new quick-change tooling system enables shops to get more production from their Swiss turning centers through reduced tool setup time and matches the performance of a solid tool.

Read More
Laser & Waterjet

Where Micro-Laser Machining Is the Focus

A company that was once a consulting firm has become a successful micro-laser machine shop producing complex parts and features that most traditional CNC shops cannot machine.

Read More

Read Next

CNC & Machine Controls

Setting Up the Building Blocks for a Digital Factory

Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.

Read More
Workforce Development

Building Out a Foundation for Student Machinists

Autodesk and Haas have teamed up to produce an introductory course for students that covers the basics of CAD, CAM and CNC while providing them with a portfolio part.

Read More

5 Rules of Thumb for Buying CNC Machine Tools

Use these tips to carefully plan your machine tool purchases and to avoid regretting your decision later.

Read More
Milltronics INSPIRE Control